
Lab 08 - Node

In this assignment, you will use Node.js and Express to develop a Web API that provides services
related to data stored in a MongoDB database.

This assignment continues the “pet store” theme from previous assignments. In this case, you will
build a Web API that allows applications to get information about the pets at the store and the pet
toys that the store sells.

In completing this assignment, you will:

● Learn how to set up Node, Express, Mongo, and related packages

● Apply what you have learned about developing a Node Express app and using various objects
and functions

● Implement JavaScript queries using Mongoose to retrieve data from a MongoDB database

● Create a server-side Web application that reads data from an incoming HTTP request and
sends back JSON data in an HTTP response

Getting Started

To complete this assignment, you will need to set up a development environment that uses Node,
Express, Mongoose, and MongoDB. We recommend that you do this on your local computer as
follows; you will likely need sudo/root access for each of these steps:

1. Install Node.js locally by downloading it from https://nodejs.org/en/download

2. From the Terminal, Command Prompt, etc. update Node Package Manager by typing the
command: npm install npm –g

3. Create a new folder or directory for your project, then navigate to it using Terminal,
Command Prompt, etc.

4. Initialize the project by typing the command: npm init

5. Install Express by typing the command: npm install express --save

6. Install Mongoose by typing the command: npm install mongoose --save

7. If you would like to install MongoDB locally, download the "Community Server" version from
https://www.mongodb.com/download-center#community and follow the instructions for
installing it and running it; alternatively, you can create an account to use a cloud service
such as MongoDB Atlas (https://www.mongodb.com/cloud/atlas); either way, be sure to
note the hostname and port number of where your database instance is running

Once you’ve set up your environment, download the three files (index.js, Animal.js, and Toy.js) you
will need for this assignment from Moodle alongside this lab manual.

Copy all three files to the directory that is the root of your Node Express project, i.e. the directory
where you ran “npm init”.

https://nodejs.org/en/download/
https://www.mongodb.com/download-center#community
https://www.mongodb.com/cloud/atlas

The index.js file is the main file for your Node Express app. It includes the necessary packages, sets
up the web server to listen on port 3000, and defines a route that sends back a simple JSON object
for all HTTP requests.

To ensure that your setup works correctly, use Terminal or Command Prompt to navigate to the root
directory of your Node Express project and type the command: node index.js

You should see the message “Listening on port 3000”.

Then use your web browser to access http://localhost:3000 and you should see a JSON object that
reads {"msg":"It works!"} in the browser.

Animal.js and Toy.js define the schema that you will need for your Mongo database. You may modify
the host/port/database configuration that is passed to mongoose.connect for your particular
environment. You don’t need to change the Schema definitions but if you want you can. In any case,
upload these schema files with your submission.

Activity

In this assignment you will implement four Web APIs using Node and Express to handle the HTTP
requests and responses, and Mongoose to handle the interaction with the MongoDB database.

The specifications of the APIs are provided below. We recommend that you attempt them in the
order in which they are described. Note that in all but the first instance, your code will need to
construct the JSON object that is sent back in the response, as opposed to just sending back the data
that comes out of MongoDB.

/findToy (20 Marks)

Parameters:

● id: the ID of the Toy to find

Example usage: /findToy?id=1234

Description:

● This API finds and returns the Toy in the “toys” collection with the ID that matches the id
parameter. It should return the entire Toy document/object, including all properties that are
stored in the database.

● If the id parameter is unspecified, or if there is no Toy that has a matching ID, this API should
return an empty object.

/findAnimals (30 Marks)

Parameters:

● species: >the species of the Animals to find

● trait: >one of the traits of the Animals to find

● gender: >the gender of the Animals to find

Example usage: /findAnimals?species=Dog&trait=loyal&gender=female

Description:

● This API finds all Animals in the “animals” collection that have a species and gender that
match the species> and gender> parameters, respectively, and for which one of the Animal’s
traits matches the trait> parameter. All matches should be complete matches, not partial
matches using regular expressions, for instance.

● The return value is an array of objects representing each Animal, but the object must only>
include the Animal’s name, species, breed, gender, and age.

● If the species>, trait>, or gender> parameter is unspecified, it should be ignored in the
search, i.e. the API should consider Animals regardless of their values for the unspecified
parameter(s)

● However, if the species>, trait>, and gender> parameters are all unspecified, then the API
should return an empty object.

● Likewise, if there are no Animals that match all of the specified parameters, the API should
return an empty object.

Examples: Consider the following collection of Animals:

name species Breed gender age traits

>“Rex” >“Dog” >“Catahoula” >“male” >1
1

>[“crazy”, “funny”]

>“Lola” >“Dog” >“Beagle” >“female” >5 >[“loyal”, “friendly”]

>“Garfield” >“Cat” >“Tabby” >“male” >3
9

>[“lazy”, “hungry”]

>“Felix” >“Cat” >“Tuxedo” >“male” >9
8

>[“funny”, “loyal”]

Example #1

Request: /findAnimals?species=Dog&trait=loyal&gender=female

Response: [{"name":"Lola","species":"Dog","breed":"Beagle","gender":"female","age":5}]

Example #2

Request: /findAnimals?trait=funny

Response:
[{"name":"Rex","species":"Dog","breed":"Catahoula","gender":"male","age":11},{"name":"Felix","sp
ecies":"Cat","breed":"Tuxedo","gender":"male","age":98}]

/animalsYoungerThan (20 Marks)

Parameters:

● age: >the maximum age (exclusive) of the Animals to find

Example usage: /animalsYoungerThan?age=12

Description:

● This API finds all Animals in the “animals” collection that have an age that is less than (but
not equal to!) the age> parameter.

● The return value is an object that has two properties:

● “count”: the number of Animals whose age is less than the age> parameter.

● “names”: an array containing the names of the Animals whose age is less than the
age> parameter (these can be arranged in any order in the array)

● If there are no Animals that have an age less than the age> parameter, then the API should
return an object that has a “count” property set to 0, but no “names” property

● If the age> parameter is unspecified or non-numeric, then the API should return an empty
object

/calculatePrice (30 Marks)

Parameters:

● id[i]: >the ID of the i>th Toy to include in the calculation

● qty[i]: >the quantity of the i>th Toy to include in the calculation

Example usage: /calculatePrice?id[0]=123&qty[0]=2&id[1]=456&qty[1]=3

Description:

● This API calculates the total price of purchasing the specified quantities of the Toys with the
corresponding IDs, using the Toys’ price from the database.

● For each i, >this API finds the Toy with the ID equal to the id[i]> parameter and determines
the subtotal for that Toy by multiplying its price by the specified quantity qty[i]>. It then uses
the subtotals for all Toys to calculate the total price.

● The return value is an object that has two properties:

● “totalPrice”: the calculated total for all Toys.

● “items”: an array containing objects that hold information about the Toys that are
included; for each Toy, there should be an object with these three properties:

● “item”: the Toy’s ID, as specified in the query

● “qty”: the quantity of the Toy, as specified in the query

● “subtotal”: the Toy’s price multiplied by the quantity

● If an id> parameter does not correspond to the ID of a Toy in the database, then that ID and
the corresponding quantity should be ignored

● If a qty> parameter is less than one or non-numeric, then it and the corresponding id>
parameter should be ignored

● If the same id> parameter is specified more than once, then the total quantity for that Toy
should be considered as the sum of all corresponding qty> parameters. However, if any such
qty> parameter is less than one or non-numeric, that parameter should be ignored.

● If all id>/qty> parameters are to be ignored because of the above, then the API should return
an object with “totalPrice” set to 0 and “items” set to an empty array

● The API should return an empty object if:

● There are no query parameters specified in the request

● The number of id> parameters does not match the number of qty> parameters

Examples: Consider the following collection of Toys:

ID Name Price

>“123” >“Dog chew toy” >10.99

>“456” >“Dog pillow” >25.99

Example #1

Request: /calculatePrice?id[0]=123&qty[0]=2&id[1]=456&qty[1]=3

Response:
{"items":[{"item":"123","qty":"2","subtotal":21.98},{"item":"456","qty":"3","subtotal":77.97}],"totalP
rice":99.95}

Example #2

Request: /calculatePrice?id[0]=123&qty[0]=1&id[1]=xxxx&qty[1]=3

Response: {"items":[{"item":"123","qty":"1","subtotal":10.99}],> "totalPrice":10.99}

Example #3

Request: /calculatePrice?id[0]=abc&qty[0]=1&id[1]=456&qty[1]=dog

Response: {"items":[],"totalPrice":0}

What about…?

You may encounter other cases that are not addressed in this document. You may handle those cases
in any manner you choose (or ignore them entirely!) since they will not be considered for grading in
this assignment.

Helpful Hints

Review the past few lessons to see the syntax for setting up routes in your Express app and for using
Mongoose to perform queries on your MongoDB database.

If you start your Node Express app and immediately see an error message such as:

MongoError: failed to connect to server [localhost:27017] on first connect [MongoError: connect
ECONNREFUSED 127.0.0.1:27017]

This means that either your MongoDB database is not running or that you have specified the
incorrect host/port combination.

For the /animalsYoungerThan API, you can do a “less than” search by specifying a query object in the
form {field:{$lt:value}}. See https://docs.mongodb.com/manual/reference/operator/query/lt/ for
more information.

For the /calculatePrice API, note that a URL query string such as

?id[0]=123&qty[0]=2&id[1]=456&qty[1]=3

will result in the HTTP Request object’s “query” property having the properties “id” and “qty”, both
of which are arrays. You can then use those arrays to find the IDs and quantities that you need. You
may want to consider using some of the ES6 data structures we saw last week, such as Maps and
Sets, to relate IDs to their corresponding quantities.

Last, and perhaps most importantly, for the /calculatePrice API, try to avoid performing multiple
queries on one request, e.g. calling Toy.find in a loop for each ID, but rather figure out how to
construct a single query object that only calls Toy.find once. Since the callback method that is invoked
as a result of the query is asynchronous, you may get unexpected results if you try to use Toy.find in a
loop.

Submission

Please submit only the files you created, along with a manual. The manual should include the
commands needed to create the app and specify where to replace the original files to see your
results. Clearly explain how to run your app. Do not submit the entire library folder.

https://docs.mongodb.com/manual/reference/operator/query/lt/

	Lab 08 - Node
	Getting Started
	Activity
	/findToy (20 Marks)
	/findAnimals (30 Marks)
	/animalsYoungerThan (20 Marks)
	/calculatePrice (30 Marks)

	Helpful Hints
	Submission

