
Full Stack

SENG 4640
Software Engineering for Web Apps

Winter 2023

Sina Keshvadi
Thompson Rivers University

What is Front-End Development?

● Designing and implementing user interface
● Using HTML, CSS, and JavaScript
● Creating the visual and interactive aspects of an

application

What is Back-End Development?

● Developing server-side of an application
● Managing databases and server-side programming
● Integrating with other systems

What is Full Stack Development?

● Developing both front-end and back-end of web
applications

● Combining client-side and server-side technologies

What is a Full Stack Developer?

● Skilled in both front-end and back-end development
● Capable of building complete web applications
● Understanding of how different components work

together

What is the MERN stack?

● MongoDB, Express.js, React, Node.js
● Full stack development environment for web

applications

MongoDB

● NoSQL database
● Stores data in JSON-like format
● Scalable and efficient for handling large amounts

of data

Express.js

● Back-end web framework for Node.js
● Provides tools for building web applications
● Handles HTTP requests and responses

React

● Front-end JavaScript library for building user
interfaces

● Declarative and component-based
● Enables building complex UIs with reusable

components

Node.js

● Server-side JavaScript runtime
● Allows for building scalable and high-performance

applications
● Enables building real-time applications with web

sockets

Why MERN stack?

● Efficient for handling large amounts of data
● Real-time updates for collaboration tools or

social networking platforms
● Robust and scalable full stack development

environment

Why MERN stack?

● The MERN stack is a popular choice for building
modern web applications

● Its combination of MongoDB, Express.js, React, and
Node.js provides a complete full stack development
environment that can handle complex data and
real-time updates.

Let’s implement the People example with React

client is react app

server is express and mongo

This was all route

app.use("/all", async (req, res) => {

 try {

 const allPeople = await Person.find();

 if (allPeople.length === 0) {

 res.status(200).send("There are no people");

 } else {

 res.render("showAll", { people: allPeople });

 }

 } catch (err) {

 res.status(500).send("Error: " + err);

 }

});

Change to send json object

app.use("/all", async (req, res) => {

 try {

 const allPeople = await Person.find();

 if (allPeople.length === 0) {

 res.status(200).send("There are no people");

 } else {

 res.status(200).json(allPeople);

 }

 } catch (err) {

 res.status(500).send("Error: " + err);

 }

});

app.listen(3001, () => {

 console.log("Listening on port 3001");

});

Change the port number to something else so that you
can run both React and Express servers simultaneously
without any port conflicts.

Whoopsie, it's not working!
But don't panic, we'll get it back on track soon!

var express = require("express");

var app = express();

var cors = require("cors");

app.set("view engine", "ejs");

var bodyParser = require("body-parser");

app.use(bodyParser.urlencoded({ extended: true }));

app.use(cors());

cors stands for "Cross-Origin Resource Sharing" and is a
security feature that allows resources from different
origins (e.g., different domains) to be accessed by a
web page. The cors middleware in Express.js enables the
server to handle CORS requests from the client-side,
thus allowing a client-side application to make requests
to an Express.js backend API even if it's hosted on a
different domain.

now, let's change react’s App.js

import React, { Component } from "react";

import "./App.css";

class App extends Component {

 constructor(props) {

 super(props);

 this.state = { people: [] };

 }

 componentDidMount() {

 fetch("http://localhost:3001/all")

 .then((res) => res.json())

 .then((data) => this.setState({ people: data }))

 .catch((err) => console.error(err));

 }

 render() {

 return (

 <div className="App">

 <h1>People:</h1>

 {this.state.people.map((person) => (

 <li key={person._id}>

 {person.name} ({person.age})

))}

 </div>

);

 }

}

export default App;

We are done with Programming Part!

- Thank you for participating in this course.

- I appreciate your patience as this was the first
semester of offering this course.

- Your feedback and participation helped me develop
this course.

- I hope that what you have learned will be useful
to you in the future.

