(Xy/AN—
/>

Full Stack

SENG 4640
Software Engineering for Web Apps
Winter 2023

Sina Keshvadi
Thompson Rivers University

What 1s Front-End Development?

e Designing and implementing user 1nterface

e Using HTML, CSS, and JavaScript

e Creating the visual and interactive aspects of an
application

What 1s Back-End Development?

e Developling server-side of an application
e Managing databases and server-side programming
e Integrating with other systems

What 1s Full Stack Development?

e Developing both front-end and back-end of web
applications
e Combining client-side and server-side technologies

What 1s a Full Stack Developer?

Skilled in both front-end and back-end development
e Capable of building complete web applications
e Understanding of how different components work

together

What i1is the MERN stack?

e MongoDB, Express.js, React, Node.js
e Full stack development environment for web
applications

MongoDB

e NoOSQL database
¢ Stores data 1n JSON-like format

Scalable and efficient for handling large amounts
of data

Express.js

e Back-end web framework for Node.js
e Provides tools for building web applications
e Handles HTTP requests and responses

React

e Front-end JavaScript library for building user
interfaces

e Declarative and component-based

e Enables building complex Uls with reusable
components

Node. Js

e Server-side JavaScript runtime
e Allows for building scalable and high-performance

applications
e Enables building real-time applications with web

sockets

Why MERN stack?

e Efficient for handling large amounts of data

e Real-time updates for collaboration tools or
soclal networking platforms

e Robust and scalable full stack development
environment

Why MERN stack?

e The MERN stack 1s a popular choice for building
modern web applications

e Its combination of MongoDB, Express.js, React, and
Node.Js provides a complete full stack development
environment that can handle complex data and
real-time updates.

Let’s 1mplement the People example with React

EXPLORER w3 welcome

\ APP_89 client 1s react app

v client o
> node_modules
> public server 1s express and mongo
> src e
¢ .gitignore
{1 package-lock.json
{} package.json
® README.md
v server
> node_modules
> public
> views
J5 index.js
{} package-lock.json
{} package.json

JS Person.js

This was all route

app.use("/all", async (req, res) => {
try {

const allPeople = await Person.find();

if (allPeople.length ===0) {
res.status (200) .send ("There are no people");

} else {
res.render ("showAll", { people: allPeople 1});

}

} catch (err) {

res.status (500) .send ("Error: " + err);

Change to send json object

app.use("/all", async (req, res) => {
try {

const allPeople = await Person.find();

if (allPeople.length ===0) {
res.status (200) .send ("There are no people");

} else {
res.status (200) .json(allPeople) ;

}

} catch (err) {

res.status (500) .send ("Error: " + err);

app.listen (3001, () => {
console.log("Listening on port 3001");

1)

Change the port number to something else so that you
can run both React and Express servers simultaneously
without any port conflicts.

C @ localhost:3000

People:

Whoopsie, it's not working!

But don't panic,

we'll get it back on track soon!

<

var express = require ("express");
var app = express();

var cors = require("cors");

app.set ("view engine", "ejs");

var bodyParser = require ("body-parser");
app.use (bodyParser.urlencoded ({ extended: true }));

app.use(cors()) ;

cors stands for "Cross-Origin Resource Sharing" and 1is a
security feature that allows resources from different
origins (e.g., different domains) to be accessed by a
web page. The cors middleware 1n Express.js enables the
server to handle CORS requests from the client-side,
thus allowing a client-side application to make requests
to an Express.js backend API even 1f it's hosted on a
different domain.

now, let's change react’s App.js

import React, { Component } from "react";

import "./App.css";

class App extends Component {
constructor (props) {
super (props) ;

this.state = { people: [] };

componentDidMount () {
fetch ("http://localhost:3001/all")
.then((res) => res.json{())
.then ((data) => this.setState({ people: data }))

.catch((err) => console.error(err)):;

render () {
return (
<div className="App">
<hl>People:</hl>

{this.state.people.map ((person) => (
<li key={person. id}>
{person.name} ({person.age})
</1i>
))}

</div>
)i

export default App;

C @ localhost:3000

Thank you All:

Sany (21)
Alex (22)
Ben (20)
Sam (22)

Trever (22)

This was a great semester!

<

We are done with Programming Part!

Thank you for participating 1n this course.

I apprecilate your patilience as this was the first
semester of offering this course.

Your feedback and participation helped me develop
this course.

I hope that what you have learned will be useful
to you 1n the future.

