
EJS

SENG 4640
Software Engineering for Web Apps

Winter 2023

Sina Keshvadi
Thompson Rivers University

Review
• Node.js and Express allow us to build server-side

web apps in JavaScript

• HTTP Requests and Responses are represented as
JavaScript objects

• We can get data from user either via the URL or
through form submissions

We've been building up our knowledge of node in
Express by looking at the core request and response
objects, and then how we can have different
functionality for different requests.

We've been building up our knowledge of node in
Express by looking at the core request and response
objects, and then how we can have different
functionality for different requests.

And now, we can get data from the user.

We've been building up our knowledge of node in
Express by looking at the core request and response
objects, and then how we can have different
functionality for different requests.

And now, we can get data from the user.

In the next few lectures, we'll start to put all
these together into a full fledged web application,
where we're serving content based on different
functionality in our app.

var bodyParser = require('body-parser');
app.use(bodyParser.urlencoded({ extended: true }));

app.use('/handleForm', (req, res) => {
var name = req.body.username;

var animals = [].concat(req.body.animal);
res.type('html').status(200);
res.write('Hello, ' + name + ', nice to meet you.');
res.write('<p>Here are the animals you like:');
res.write('');
animals.forEach((animal) => { res.write(''

+ animal + '');
});
res.write('');
res.write("" + "Back to

form");
res.end();

});

use the body-parser middleware, because the data coming from the user is part
of the form that was submitted using an HTTP post request.

var bodyParser = require('body-parser');
app.use(bodyParser.urlencoded({ extended: true }));

app.use('/handleForm', (req, res) => {
var name = req.body.username;

var animals = [].concat(req.body.animal);
res.type('html').status(200);
res.write('Hello, ' + name + ', nice to meet you.');
res.write('<p>Here are the animals you like:');
res.write('');
animals.forEach((animal) => { res.write(''

+ animal + '');
});
res.write('');
res.write("" + "Back to

form");
res.end();

});

Username from our form.
And remember the body parser middleware, would put the form data into the body
property of the request.

var bodyParser = require('body-parser');
app.use(bodyParser.urlencoded({ extended: true }));

app.use('/handleForm', (req, res) => {
var name = req.body.username;

var animals = [].concat(req.body.animal);
res.type('html').status(200);
res.write('Hello, ' + name + ', nice to meet you.');
res.write('<p>Here are the animals you like:');
res.write('');
animals.forEach((animal) => { res.write(''

+ animal + '');
});
res.write('');
res.write("" + "Back to

form");
res.end();

});

we want to be an array of the animals. So here's a little JavaScript trick,
start with an empty array and then use the .concat function to concatenate
whatever is in the body of the request with that empty array.

var bodyParser = require('body-parser');
app.use(bodyParser.urlencoded({ extended: true }));

app.use('/handleForm', (req, res) => {
var name = req.body.username;

var animals = [].concat(req.body.animal);
res.type('html').status(200);
res.write('Hello, ' + name + ', nice to meet you.');
res.write('<p>Here are the animals you like:');
res.write('');
animals.forEach((animal) => { res.write(''

+ animal + '');
});
res.write('');
res.write("" + "Back to

form");
res.end();

});

Keep in mind that all of the code we're seeing here is server-side, it's not
client-side. All of this code is running in the server.

● This code works fine but maybe we want to do
something to clean up all of this.

● This code works fine but maybe we want to do
something to clean up all of this.

● Often we want to separate format from
functionality.

● This code works fine but maybe we want to do
something to clean up all of this.

● Often we want to separate format from
functionality.

● That is we want to separate the appearance of what
we're producing, from the code that produces it.

● This code works fine but maybe we want to do
something to clean up all of this.

● Often we want to separate format from
functionality.

● That is we want to separate the appearance of what
we're producing, from the code that produces it.

● In this case we want to separate the HTML from the
JavaScript.

● This code works fine but maybe we want to do
something to clean up all of this.

● Often we want to separate format from
functionality.

● That is we want to separate the appearance of what
we're producing, from the code that produces it.

● In this case we want to separate the HTML from the
JavaScript.

● In order to separate the JavaScript from the HTML,
in Express we can us a tool called EJS, or
EmbeddedJS, or embedded JavaScript.

● This code works fine but maybe we want to do
something to clean up all of this.

● Often we want to separate format from
functionality.

● That is we want to separate the appearance of what
we're producing, from the code that produces it.

● In this case we want to separate the HTML from the
JavaScript.

● In order to separate the JavaScript from the HTML,
in Express we can us a tool called EJS, or
EmbeddedJS, or embedded JavaScript.

● EJS is a view engine that combines data or static
content, with embedded JavaScript, and executes
the JavaScript to generate HTML.

● This code works fine but maybe we want to do
something to clean up all of this.

● Often we want to separate format from
functionality.

● That is we want to separate the appearance of what
we're producing, from the code that produces it.

● In this case we want to separate the HTML from the
JavaScript.

● In order to separate the JavaScript from the HTML,
in Express we can us a tool called EJS, or
EmbeddedJS, or embedded JavaScript.

● EJS is a view engine that combines data or static
content, with embedded JavaScript, and executes
the JavaScript to generate HTML.

● This means that our HTML can be rendered
dynamically on the server, and then sent back as
content to the browser.

What is EJS?

• EJS, or EmbeddedJS, is a view engine that uses
data and embedded JavaScript to produce HTML

• This allows webpages to be developed statically
and rendered dynamically server-side

• EmbeddedJS is a package that can be installed
with the command: npm install ejs

Using EJS in an Express app

• Set EJS as the default rendering method in your app
with app.set('view engine', 'ejs');

var express = require(‘express’);
var app = express();

app.set('view engine', 'ejs');

app.get('/', (req, res) => {
res.render('welcome', {username:
'CandyLover'});

});

There are many different view engines that we can use, and ejs is just one of
them, and in our app, we would set the view engine to ejs.

Using EJS in an Express app

• Set EJS as the default rendering method in your app
with app.set('view engine', 'ejs');

var express = require(‘express’);
var app = express();

app.set('view engine', 'ejs');

app.get('/', (req, res) => {
 res.render('welcome', {username: 'CandyLover'});
});

Then, rather than using the response, write, or send function, we would use the
render function.

Using EJS in an Express app

• Set EJS as the default rendering method in your app
with app.set('view engine', 'ejs');

var express = require(‘express’);
var app = express();

app.set('view engine', 'ejs');

app.get('/', (req, res) => {
res.render('welcome', {username:'CandyLover'});

});

The render function takes the name of the EJS file as it's first argument.
By default the ejs files should go in the views sub directory or folder, and we
don't need to say .ejs at the end because it's understood.

Using EJS in an Express app

• Set EJS as the default rendering method in your app
with app.set('view engine', 'ejs');

var express = require(‘express’);
var app = express();

app.set('view engine', 'ejs');

app.get('/', (req, res) => { res.render('welcome',
{username: ‘CandyLover'});

});

If we want to pass arguments to the ejs file, we do that using JavaScript
objects.

So now let's see what an .ejs file looks like.

Writing EJS files
• A .ejs file is just an HTML file that has JavaScript code

embedded in it

• Anything between <%= and %> tags will be evaluated
and incorporated into the HTML

• By default, the .ejs files should be in the views/
subdirectory of the Express project

<!-- This is views/welcome.ejs -->

<!DOCTYPE html>
<html>
<body>

<h1>Welcome, <%= username %>!</h1>

</body>
</html>

EJS and JavaScript
• EJS will execute any JavaScript that appears

between <% and %> tags when generating
the HTML page on the server

res.render('welcome', {username: 'CandyLover', isAdmin: true});

<!DOCTYPE html>
<html>
<body>

<h1>Welcome, <%= username %>!</h1>
<% if (isAdmin) { %>

<p> Remember to check your email every 24 hours! </p>
<% } %>

</body>
</html>

render function on the response uses welcome.ejs and would send the argument
that includes two key value pairs

EJS and JavaScript
• EJS will execute any JavaScript that appears

between <% and %> tags when generating
the HTML page on the server

res.render('welcome', {username: 'CandyLover', isAdmin: true});

<!DOCTYPE html>
<html>
<body>

<h1>Welcome, <%= username %>!</h1>
<% if (isAdmin) { %>

<p> Remember to check your email every 24 hours! </p>
<% } %>

</body>
</html>

evaluate username using <% and %>

EJS and JavaScript
• EJS will execute any JavaScript that appears

between <% and %> tags when generating
the HTML page on the server

res.render('welcome', {username: 'CandyLover', isAdmin: true});

<!DOCTYPE html>
<html>
<body>

<h1>Welcome, <%= username %>!</h1>
<% if (isAdmin) { %>

<p> Remember to check your email every 24 hours! </p>
<% } %>

</body>
</html>

javascript using <% and %>

EJS and JavaScript
• EJS will execute any JavaScript that appears

between <% and %> tags when generating
the HTML page on the server

res.render('welcome', {username: 'CandyLover', isAdmin: true});

<!DOCTYPE html>
<html>
<body>

<h1>Welcome, <%= username %>!</h1>
<% if (isAdmin) { %>

<p> Remember to check your email every 24 hours! </p>
<% } %>

</body>
</html>

use EJS to separate the JavaScript and the HTML

Let's go back to our motivating example.
Whereas part of handling the form, we want to echo
back the data that the user sent but we wanna do that
without tangling up all of our JavaScript and HTML
within the index.js file.

var bodyParser = require("body-parser");

app.use(bodyParser.urlencoded({ extended: true }));

app.use("/handleForm", (req, res) => {

 var name = req.body.username;

 var animals = [].concat(req.body.animal);

 res.type("html").status(200);

 res.write("Hello, " + name + ", nice to meet you.");

 res.write("<p>Here are the animals you like:");

 res.write("");

 animals.forEach((animal) => {

 res.write("" + animal + "");

 });

 res.write("");

 animals.forEach((animal) => {

 res.write("" + animal + "");

 });

 res.write("");

 res.write("" + "Back to form ");

 res.end();

});

And all of this code is the code we'd like to remove.

var bodyParser = require("body-parser");

app.use(bodyParser.urlencoded({ extended: true }));

app.use("/handleForm", (req, res) => {

 var name = req.body.username;

 var animals = [].concat(req.body.animal);

 res.type("html").status(200);

 res.write("Hello, " + name + ", nice to meet you.");

 res.write("<p>Here are the animals you like:");

 res.write("");

 animals.forEach((animal) => {

 res.write("" + animal + "");

 });

 res.write("");

 animals.forEach((animal) => {

 res.write("" + animal + "");

 });

 res.write("");

 res.write("" + "Back to form ");

 res.end();

});

All this code is not really the code for the logic of our program.
But is really just the rendering of the HTML.

var bodyParser = require("body-parser");

app.use(bodyParser.urlencoded({ extended: true }));

app.use("/handleForm", (req, res) => {

 var name = req.body.username;

 var animals = [].concat(req.body.animal);

 res.render("showAnimals", {name:name, animals:animals});

});

we move that entirely and replace it with the render function.
the ejs file, that we want to render, is showanimals.

var bodyParser = require("body-parser");

app.use(bodyParser.urlencoded({ extended: true }));

app.use("/handleForm", (req, res) => {

 var name = req.body.username;

 var animals = [].concat(req.body.animal);

 res.render("showAnimals", {name:name, animals:animals});

});

Note: showanimals.ejs would need to be in the views subdirectory.

<!-- This is views/showAnimals.ejs -->

Hello, <%= name %>, nice to meet you.

<p>Here are the animals you like:

<% animals.forEach((animal) => { %>

 <%= animal %>

<% }); %>

Back to form

var bodyParser = require("body-parser");

app.use(bodyParser.urlencoded({ extended: true }));

app.use("/handleForm", (req, res) => {

 var name = req.body.username;

 var animals = [].concat(req.body.animal);

 res.render("showAnimals", {name:name, animals:animals});

});

name came as one of the arguments that was passed to the render function.

<!-- This is views/showAnimals.ejs -->

Hello, <%= name %>, nice to meet you.

<p>Here are the animals you like:

<% animals.forEach((animal) => { %>

 <%= animal %>

<% }); %>

Back to form

var bodyParser = require("body-parser");

app.use(bodyParser.urlencoded({ extended: true }));

app.use("/handleForm", (req, res) => {

 var name = req.body.username;

 var animals = [].concat(req.body.animal);

 res.render("showAnimals", {name:name, animals:animals});

});

iterate over all of the animals that are in the array, using the forEach
function.

<!-- This is views/showAnimals.ejs -->

Hello, <%= name %>, nice to meet you.

<p>Here are the animals you like:

<% animals.forEach((animal) => { %>

 <%= animal %>

<% }); %>

Back to form

var bodyParser = require("body-parser");

app.use(bodyParser.urlencoded({ extended: true }));

app.use("/handleForm", (req, res) => {

 var name = req.body.username;

 var animals = [].concat(req.body.animal);

 res.render("showAnimals", {name:name, animals:animals});

});

<!-- This is views/showAnimals.ejs -->

Hello, <%= name %>, nice to meet you.

<p>Here are the animals you like:

<% animals.forEach((animal) => { %>

 <%= animal %>

<% }); %>

Back to form

Summary
• EJS allows webpages to be developed statically

and rendered dynamically server-side

• An Express app can generate and send the HTML
from a .ejs file using the Response’s render
function

• EJS will execute any JavaScript that appears
between <% and %> tags when generating
the HTML page on the server

