
Node.js
Intro to Node.js Environment

SENG 4640
Software Engineering for Web Apps

Winter 2023

Sina Keshvadi
Thompson Rivers University



Review: How does a Web Browser Work?

• The World Wide Web utilizes Hypertext 
Transfer Protocol (HTTP) to transfer documents

Client sends request

Client Server

Server sends response

1

2



Review: How does a Web Browser Work?

• The World Wide Web utilizes Hypertext 
Transfer Protocol (HTTP) to transfer documents

Client sends request

Server sends response

1

2
Client Server



Review: How does a Web Browser Work?

• The World Wide Web utilizes Hypertext 
Transfer Protocol (HTTP) to transfer documents

Client sends request

Server sends response

1

2
Client Server



What does the Web Server do?
• Listen for and accept incoming HTTP requests

• Parse the HTTP request to determine what is being 
requested

• Locate (and/or create) the resource being 
requested

• Construct and send back the HTTP response



Node.js
• Asynchronous, event-driven JavaScript runtime 

environment for building web applications

• Treats HTTP requests as events that invoke 
callback functions/handlers that construct the HTTP 
response

• Also includes a package manager to simplify the 
deployment of JavaScript apps



Installing Node.js
• You can install Node.js by downloading, running, 

and finishing the package installer available here:
• https://nodejs.org/en/download/

• Check that installation is correct using: node –v

• Update modules using: npm install npm –g



Setting up a new project
We want to create a server-side Web application
• Create a new folder for your project

• Use Terminal, Command Prompt, etc. to navigate to 
that folder

• Set up a new project by running: npm init
• You will be prompted to enter some information about 

your project (select defaults)
• Specify “index.js” as your entry point (is the default)



Setting up a new project
• Your project folder should now have a
package.json configuration file

{
"name": "helloworld", 
"version": "1.0.0",
"description": "A basic hello world app",
"main": "index.js",
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "TRU Learner", 
"license": "ISC"

}



Node is just a framework
We are going to build on top of that using Express



Express
• Express is a web application framework that sits on 

top of a Node.js server
• Express helps you modularize and streamline your 

web application
• Within Express, you can organize your app in many 

ways:
• Define separate modules that have different 

responsibilities
• Handle requests via different routes and routers
• Split each step in the processing of a request into 
Middlewares



Adding Express

• To use Express, run the following from the folder 
where you created your Node.js app:
npm install express --save

• The Express package will be downloaded to the 
project and added to your package.json file as a 
dependency
• Package: a package is a module of JavaScript code, 

usually with a specific purpose, that can be re-used and 
assembled with other modules

• Dependency: A dependency is a piece of code that your 
program relies on to work correctly



Express Configuration
• Your package.json file will now have a new section 

called dependencies
• npm can refer to this in the future and re-download 

or update your packages as needed
{

"name": "helloworld", 
"version": "1.0.0",
"description": "A basic hello world app",
"main": "index.js", 
"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
},
"author": "TRU Learner", 
"license": "ISC", 
"dependencies": {

"express": "^4.18.2"
}

}



Hello World
• Create an file named index.js in your Node.js 

project root directory with the following contents:

var express = require('express');
var app = express();

app.use('/', (req, res) => { 
res.send('Hello World!');

});

app.listen(3000, () => {
console.log('Listening on port 3000');
});



Hello World
• Create an file named index.js in your Node.js 

project root directory with the following contents:

var express = require('express');
var app = express();

app.use('/', (req, res) => { 
res.send('Hello World!');

});

app.listen(3000, () => {
console.log('Listening on port 3000');
});



Hello World
• Create an file named index.js in your Node.js 

project root directory with the following contents:

var express = require('express');
var app = express();

app.use('/', (req, res) => { 
res.send('Hello World!');

});

app.listen(3000, () => {
console.log('Listening on port 3000');
});



Hello World
• Create an file named index.js in your Node.js 

project root directory with the following contents:

var express = require('express');
var app = express();

app.use('/', (req, res) => { 
res.send('Hello World!');

});

app.listen(3000, () => {
console.log('Listening on port 3000');
});



Running Express
• In the project folder, run: node index.js

• When the server starts, you should see “Listening 
on port 3000” written to the console/screen

• Open a browser on the same computer and go to
http://localhost:3000/





Commands

> mkdir app_one

> cd app_one

> npm init

> npm install express --save

> touch index.js
make a file - index.js
write the backend content
> node index.js

open http://localhost:3000/

 



Looking Ahead
• How can the server send different responses for 

different requests?

• How can the server dynamically generate 
responses?

• How does the server interact with external data 
sources?


