
SENG 4640
Software Engineering for Web Apps

Winter 2023

Sina Keshvadi
Thompson Rivers University

Testing Web Apps

Testing WebApps

■ Testing is the process of exercising a WebApp
with the intent of finding (and ultimately
correcting) errors.

■ Tests must be design to uncover errors in
WebApps that are implemented in:
❑ different operating systems
❑ browsers [or other interface devices such as set-top

boxes, personal digital assistants (PDAs), and
mobile phones]

❑ hardware platforms
❑ communications protocols

The “Dimensions” of Quality - I

■ Reviews and testing examine one or more of the following quality
dimensions:

■ Content is evaluated at both a syntactic and semantic level.
❑ At the syntactic level, spelling, punctuation, and grammar are

assessed for text-based documents.
❑ At a semantic level, correctness (of information presented),

consistency (across the entire content object and related
objects), and lack of ambiguity are all assessed.

■ Function is tested to uncover errors that indicate lack of
conformance to stakeholder requirements. Each WebApp function
is assessed for correctness, instability, and general conformance to
appropriate implementation standards (e.g., Java or XML
language standards).

■ Structure is assessed to ensure that it properly delivers WebApp
content and function, is extensible, and can be supported as new
content or functionality is added.

The “Dimensions” of Quality - II
■ Usability is tested to ensure that each category of user is supported by

the interface and can learn and apply all required navigation syntax
and semantics.

■ Navigability is tested to ensure that all navigation syntax and semantics
are exercised to uncover any navigation errors (e.g., dead links,
improper links, erroneous links).

■ Performance is tested under a variety of operating conditions,
configurations, and loading to ensure that the system is responsive to
user interaction and handles extreme loading without unacceptable
operational degradation.

■ Compatibility is tested by executing the WebApp in a variety of
different host configurations on both the client and server sides. The
intent is to find errors that are specific to a unique host configuration.

■ Interoperability is tested to ensure that the WebApp properly interfaces
with other applications and/or databases.

■ Security is tested by assessing potential vulnerabilities and attempting
to exploit each. Any successful penetration attempt is deemed a
security failure.

Testing Strategy
1. The content model for the WebApp is reviewed to uncover errors.

2. The interface model is reviewed to ensure that all use cases have been
accommodated.

3. The design model for the WebApp is reviewed to uncover navigation
errors.

4. The user interface is tested to uncover errors in presentation and/or
navigation mechanics.

5. Selected functional components are unit tested.

6. Navigation throughout the architecture is tested.

7. The WebApp is implemented in a variety of different environmental
configurations and is tested for compatibility with each configuration.

8. Security tests are conducted in an attempt to exploit vulnerabilities in the
WebApp or within its environment.

9. Performance tests are conducted.

10. The WebApp is tested by a controlled and monitored population of end
users. The results of their interaction with the system are evaluated for
content and navigation errors, usability concerns, compatibility concerns,
and WebApp reliability and performance.

The Testing Process

Content Testing
■ Content testing combines both reviews and the generation of

executable test cases.
❑ Reviews are applied to uncover semantic errors in content.
❑ Executable testing is used to uncover content errors that can

be traced to dynamically derived content that is driven by
data acquired from one or more databases.

■ Content testing has three important objectives:
❑ to uncover syntactic errors (e.g., typos, grammar mistakes)

in text-based documents, graphical representations, and
other media,

❑ to uncover semantic errors (i.e., errors in the accuracy or
completeness of information) in any content object
presented as navigation occurs, and

❑ to find errors in the organization or structure of content that
is presented to the end user.

Content Testing - Checklist

■ Is the information up to date and factually accurate?
■ Is the information concise and to the point?
■ Is the layout of the content object easy for the user to understand?
■ Can information embedded within a content object be found

easily?
■ Have proper references been provided for all information derived

from other sources?
■ Is the information presented consistent internally and consistent

with information presented in other content objects?
■ Can the content be interpreted as being offensive or misleading,

or does it open the door to litigation?
■ Does the content infringe on existing copyrights or trademarks?
■ Does the content contain internal links that supplement existing

content? Are the links correct?
■ Does the aesthetic style of the content conflict with the aesthetic

style of the interface?

Content Testing – Dynamic Content
■ When content is created dynamically using information

maintained within a database, the following issues are
considered:
❑ The original client-side request for information is rarely

presented in the form [e.g., structured query language (SQL)]
that can be input to a database management system (DBMS).

❑ The database may be remote to the server that houses the
WebApp.
■ What happens if the WebApp is accessible but the database is

not?
❑ Raw data acquired from the database must be transmitted to

the WebApp server and properly formatted for subsequent
transmittal to the client.

❑ The dynamic content object(s) must be transmitted to the
client in a form that can be displayed to the end user.

Content Testing - Database

User Interface Testing

■ Verification and validation of a WebApp user interface occurs at
three distinct points in the WebE process.
❑ During communication and modeling , the interface model is

reviewed to ensure that it conforms to customer requirements
and to other elements of the analysis model.

❑ During design, the interface design model is reviewed to
ensure that generic quality criteria established for all user
interfaces have been achieved and that application-specific
interface design issues have been properly addressed.

❑ During testing, the focus shifts to the execution of
application-specific aspects of user interaction as they are
manifested by interface syntax and semantics. In addition,
testing provides a final assessment of usability.

UI Testing Strategy

■ Interface features are tested to ensure that design rules,
aesthetics, and related visual content are available to the
user without error.

■ Individual interface mechanisms are tested in a manner that
is analogous to unit testing.

■ Each interface mechanism is tested within the context of a
use case or navigation pathway for a specific user category.

■ The complete interface is tested against selected use cases
and navigation pathways to uncover errors in the semantics
of the interface.

■ The interface is tested within a variety of environments (e.g.,
operating systems, browsers) to ensure that it will be
compatible.

Usability Testing

■ Similar to interface semantics testing in the
sense that it evaluates:
❑ the degree to which users can interact effectively

with the WebApp
❑ the degree to which the WebApp guides users’

actions, provides meaningful feedback and
enforces a consistent interaction approach.

■ Determines the degree to which the WebApp
interface makes the user’s life easy

Usability Test Categories
■ Interactivity. Are interaction mechanisms (e.g., pull-down

menus, buttons, pointers) easy to understand and use?
■ Layout. Are navigation mechanisms, content, and functions

placed in a manner that allows the user to find them
quickly?

■ Readability. Is text well written and understandable? Are
graphic representations intuitive and easy to understand?

■ Aesthetics. Do the layout, color, typeface, and related
characteristics lead to ease of use? Do users “feel
comfortable” with the look and feel of the WebApp?

■ Display characteristics. Does the WebApp make optimal
use of screen size and resolution?

■ Time sensitivity. Can important features, functions, and
content be used or acquired in a timely manner?

■ Personalization. Does the WebApp appropriately tailor
itself to the specific needs of different user categories or
individual users?

Usability Evaluation: Checklist
❑ Is the system usable without continual help or instruction?
❑ Do the rules of interaction help a knowledgeable user to work

efficiently?
❑ Do interaction mechanisms become more flexible as users

become more knowledgeable?
❑ Has the system been tuned to the physical and social

environment in which it will be used?
❑ Are users aware of the state of the system? Do users know

where they are at all times?
❑ Is the interface structured in a logical and consistent manner?
❑ Are interaction mechanisms, icons, and procedures consistent

across the interface?
❑ Does the interaction anticipate errors and help the user correct

them?
❑ Is the interface tolerant of errors that are made?
❑ Is the interaction simple?

Compatibility Testing

■ WebApps operate in complex (and often unpredictable)
environments

■ Different browsers, screen resolutions, operating systems,
plug-ins, access bandwidths, etc.

■ Serious errors can be caused by obscure combinations
■ Most common problem is deterioration in usability:

■ Download speeds may become unacceptable
■ Missing plug-ins may make content unavailable
■ Browser differences can change page layout or legibility
■ Forms may be improperly organized.

■ Compatibility testing strives to uncover these problems before
the WebApp goes online.

■ First step is to define a set of “commonly encountered”
client-side configurations and their variants.

■ Next, derive a series of compatibility validation tests (from
existing interface tests, navigation tests, performance
tests, and security tests).

Configuration Testing

■ Configuration variability and instability are
important factors that make Web engineering a
challenge.

■ Hardware, operating system(s), browsers, storage capacity,
network communication speeds, and a variety of other
client-side factors are difficult to predict for each user.

■ The job of configuration testing is to test a set of
probable client-side and server-side
configurations to ensure that the user experience
will be the same on all of them and to isolate
errors that may be specific to a particular
configuration.

Testing Strategy

■ Server-side. configuration test cases are designed to verify that
the projected server configuration [i.e., WebApp server, database
server, operating system(s), firewall software, concurrent
applications] can support the WebApp without error.

■ Client-side. On the client side, configuration tests focus more
heavily on WebApp compatibility with configurations that contain
one or more permutations of the following components:
❑ Hardware. CPU, memory, storage, and printing devices
❑ Operating systems. Linux, Macintosh OS, Microsoft Windows,

a mobile-based OS
❑ Browser software. FireFox, Internet Explorer, Safari,

Mozilla/Netscape, Opera, and others
❑ User interface components. Active X, Java applets, and

others
❑ Plug-ins. QuickTime, RealPlayer, and many others
❑ Connectivity. Cable, DSL, regular modem, industry-grade

connectivity

Security and Performance Testing

■ Security and performance testing address the three distinct
elements of the WebApp infrastructure
❑ the server-side environment that provides the gateway to

Internet users
❑ the network communication pathway between the server

and the client machine
❑ the client-side environment that provides the end user with a

direct interface to the WebApp.
■ Security testing focuses on unauthorized access to WebApp

content and functionality along with other systems that
cooperate with the WebApp on the server side.

■ Performance testing focuses on the operating characteristics of
the WebApp and on whether those operating characteristics
meet the needs of end users.

Security Testing

■ One or more of the following security elements is implemented [Ngu01]:
❑ Firewalls. A filtering mechanism that is a combination of hardware

and software that examines each incoming packet of information to
ensure that it is coming from a legitimate source, blocking any data
that are suspect.

❑ Authentication. A verification mechanism that validates the identity
of all clients and servers, allowing communication to occur only when
both sides are verified.

❑ Encryption. An encoding mechanism that protects sensitive data by
modifying it in a way that makes it impossible to read by those with
malicious intent. Encryption is strengthened by using digital certificates
that allow the client to verify the destination to which the data are
transmitted.

❑ Authorization. A filtering mechanism that allows access to the client
or server environment only by those individuals with appropriate
authorization codes (e.g., user ID and password).

■ Security tests should be designed to probe each of these security
technologies in an effort to uncover security holes that can be exploited
by those with malicious intent.

Performance Testing

■ Objectives:
■ Does the server response time degrade to a point where it is noticeable

and unacceptable?
■ At what point (in terms of users, transactions, or data loading) does

performance become unacceptable?
■ What system components are responsible for performance

degradation?
■ What is the average response time for users under a variety of loading

conditions?
■ Does performance degradation have an impact on system security?
■ Is WebApp reliability or accuracy affected as the load on the system

grows?
■ What happens when loads that are greater than maximum server

capacity are applied?
■ What is the impact of poor performance on company revenues?

■ Load testing determines how the WebApp and its server-side environment
will respond to various loading conditions.

■ Stress testing is a continuation of load testing, but in this instance the
variables, N, T, and D are forced to meet and then exceed operational limits.

Testing React Apps
• Mocha – widely used test runner (testing

framework) used to run JavaScript tests

• Chai – assertion library for Behavior Driven Testing

• Enzyme – testing utility for React for manipulating
and inspecting React Component state and output

npm install --force --save-dev @wojtekmaj/enzyme-adapter-react-17

Getting Started - Installation

• To include Enzyme and Chai as dependencies, run
the following command:
npm install --save-dev enzyme react-test-renderer chai

Use the --force command since React 18 is a new version, and the Enzyme
library has not yet been published for this version.

Getting Started - Installation
• To include Enzyme and Chai as dependencies, run

the following command:

• Note that the default file structure places all
JavaScript and CSS code in the ‘src’ folder.

• We will create an additional folder within ‘src’
named ‘tests’ in which we include all testing
scripts

• All test files must be in the form of *.test.js, e.g.
Dogs.test.js

npm install --save-dev enzyme react-test-renderer chai

npm install --force --save-dev @wojtekmaj/enzyme-adapter-react-17

Getting Started
• Node.js should create a default App.test.js,

or you can write your own

Getting Started
• Node.js should create a default App.test.js,

or you can write your own
• Include libraries necessary for testing

• Import React and ReactDOM for component
manipulation

• Import keywords from Enzyme

• Import keywords from Chai

import React from 'react';

import ReactDOM from 'react-dom';

import { mount, shallow } from 'enzyme';

import {expect} from 'chai';

Import this headers in file.test.js

import React from "react";
import ReacDOM from "react-dom";

import { expect } from "chai";
import {mount, shallow } from "enzyme";
import Enzyme from "enzyme";
import Adapter from

"@wojtekmaj/enzyme-adapter-react-17";
Enzyme.configure({ adapter: new Adapter() });
import App from "../App";

Important: This is a new change, and I will not modify the
upcoming slides, but instead use this headers consistently.

Getting Started
• Node.js should create a default App.test.js,

or you can write your own
• Include libraries necessary for testing

• Import React and ReactDOM for component
manipulation

import React from 'react';

import ReactDOM from 'react-dom';

• Import keywords from Enzyme

import { mount, shallow } from 'enzyme';

Import keywords from Chai
import {expect} from 'chai';

•

Getting Started
• Node.js should create a default App.test.js,

or you can write your own
• Include libraries necessary for testing

• Import React and ReactDOM for component
manipulation

import React from 'react';

import ReactDOM from 'react-dom';

• Import keywords from Enzyme

import { mount, shallow } from 'enzyme';

Import keywords from Chai
import {expect} from 'chai';

•

The curly braces indicate we only want to import the 'mount' and 'shallow'
functions from the 'enzyme' module, rather than the entire module.

Getting Started
• Node.js should create a default App.test.js,

or you can write your own
• Include libraries necessary for testing

• Import React and ReactDOM for component
manipulation

• Import keywords from Enzyme

• Import keywords from Chai

import React from 'react';

import ReactDOM from 'react-dom';

import { mount, shallow } from 'enzyme';

import {expect} from 'chai';

Anatomy of a React Test

import React from 'react';
import { expect } from 'chai';
import { mount, shallow } from 'enzyme';
import App from '../App';

describe("Test suite for App component", function(){

it("only one element in App class", function() {

const wrapper = shallow(<App />);
expect(wrapper.find(".App")).length(1);

});
});

Anatomy of a React Test

import React from 'react';
import { expect } from 'chai';
import { mount, shallow } from 'enzyme';
import App from '../App';

describe("Test suite for App component", function(){

it("only one element in App class", function() {

const wrapper = shallow(<App />);
expect(wrapper.find(".App")).length(1);

});
});

The component that we are testing

Anatomy of a React Test

import React from 'react';
import { expect } from 'chai';
import { mount, shallow } from 'enzyme';
import App from '../App';

describe("Test suite for App component", function(){

it("only one element in App class", function() {

const wrapper = shallow(<App />);
expect(wrapper.find(".App")).length(1);

});
});

describe a test suit (a collection of test cases) using Mocha

Anatomy of a React Test

import React from 'react';
import { expect } from 'chai';
import { mount, shallow } from 'enzyme';
import App from '../App';

describe("Test suite for App component", function(){

it("only one element in App class", function() {

const wrapper = shallow(<App />);
expect(wrapper.find(".App")).length(1);

});
});

a message that describe what test suit does

Anatomy of a React Test

import React from 'react';
import { expect } from 'chai';
import { mount, shallow } from 'enzyme';
import App from '../App';

describe("Test suite for App component", function(){

it("only one element in App class", function() {

const wrapper = shallow(<App />);
expect(wrapper.find(".App")).length(1);

});
});

to write an individual test case, we use keyword (function) it

Anatomy of a React Test

import React from 'react';
import { expect } from 'chai';
import { mount, shallow } from 'enzyme';
import App from '../App';

describe("Test suite for App component", function(){

it("only one element in App class", function() {

const wrapper = shallow(<App />);
expect(wrapper.find(".App")).length(1);

});
});

function it the test itself

Anatomy of a React Test

import React from 'react';
import { expect } from 'chai';
import { mount, shallow } from 'enzyme';
import App from '../App';

describe("Test suite for App component", function(){

it("only one element in App class", function() {

const wrapper = shallow(<App />);
expect(wrapper.find(".App")).length(1);

});
});

shallow (imported from enzyme) create a shallow component (without its
childs)

Anatomy of a React Test

import React from 'react';
import { expect } from 'chai';
import { mount, shallow } from 'enzyme';
import App from '../App';

describe("Test suite for App component", function(){

it("only one element in App class", function() {

const wrapper = shallow(<App />);
expect(wrapper.find(".App")).length(1);

});
});

expect keyword: what we expect to happen

Testing React Component Relationships

it('Dog List contains two dogs', function() {
const wrapper = mount(<App/>);
expect(wrapper.find('Dogs')

.find('DogItem')).length(2);
});

this could be in the same test file (test suit) or in a different one.

Testing React Component Relationships

it('Dog List contains two dogs', function() {
const wrapper = mount(<App/>);
expect(wrapper.find('Dogs')

.find('DogItem')).length(2);
});

unlike shallow, mount create a deep creation (app component and its
child(s))

Testing React Component Relationships

it('Dog List contains two dogs', function() {
const wrapper = mount(<App/>);
expect(wrapper.find('Dogs')

.find('DogItem')).length(2);
});

find two dog items

Now, let’s see how we can Simulate user interaction
with the App

Testing Data Entry and Form Submission
it("successfully adds dog to list when form submitted",

function() {
const wrapper = mount(<App/>);
const adddog = wrapper.find('AddDog');

adddog.find('#dogName').at(0).getDOMNode().value = 'Lola';
adddog.find('#imageURL').at(0).getDOMNode().value =

'https:// static.pexels.com/photos/54386/pexels-
photo-54386.jpeg';

adddog.find('#dogBreed').at(0).getDOMNode().value =
'Beagle';

 const form = adddog.find('form');
 form.simulate('submit');
 expect(wrapper.find('Dogs')

 .find('DogItem')).length(3);
 expect(wrapper.state().dogs[2].name == 'Lola');

});

it("successfully adds dog to list when form submitted",
function() {

const wrapper = mount(<App/>);
const adddog = wrapper.find('AddDog');

adddog.find('#dogName').at(0).getDOMNode().value = 'Lola';
adddog.find('#imageURL').at(0).getDOMNode().value =

'https:// static.pexels.com/photos/54386/pexels-
photo-54386.jpeg';

adddog.find('#dogBreed').at(0).getDOMNode().value =
'Beagle';

 const form = adddog.find('form');
 form.simulate('submit');
 expect(wrapper.find('Dogs')

 .find('DogItem')).length(3);
 expect(wrapper.state().dogs[2].name == 'Lola');

});

Here we test if our app successfully adds a dog to the list when we submit
the form.

it("successfully adds dog to list when form submitted",
function() {

const wrapper = mount(<App/>);
const adddog = wrapper.find('AddDog');

adddog.find('#dogName').at(0).getDOMNode().value = 'Lola';
adddog.find('#imageURL').at(0).getDOMNode().value =

'https:// static.pexels.com/photos/54386/pexels-
photo-54386.jpeg';

adddog.find('#dogBreed').at(0).getDOMNode().value =
'Beagle';

 const form = adddog.find('form');
 form.simulate('submit');
 expect(wrapper.find('Dogs')

 .find('DogItem')).length(3);
 expect(wrapper.state().dogs[2].name == 'Lola');

});

mount the App component and use that component to find the addDog component.
addDog was the component that allows users to add a new dog.

it("successfully adds dog to list when form submitted",
function() {

const wrapper = mount(<App/>);
const adddog = wrapper.find('AddDog');

adddog.find('#dogName').at(0).getDOMNode().value = 'Lola';
adddog.find('#imageURL').at(0).getDOMNode().value =

'https:// static.pexels.com/photos/54386/pexels-
photo-54386.jpeg';

adddog.find('#dogBreed').at(0).getDOMNode().value =
'Beagle';

 const form = adddog.find('form');
 form.simulate('submit');
 expect(wrapper.find('Dogs')

 .find('DogItem')).length(3);
 expect(wrapper.state().dogs[2].name == 'Lola');

});

set Lola to the HTML element that has id=dogName
get(0) is for the case that we have (shouldn’t) more than one elements with
#dogName id

it("successfully adds dog to list when form submitted",
function() {

const wrapper = mount(<App/>);
const adddog = wrapper.find('AddDog');

adddog.find('#dogName').at(0).getDOMNode().value = 'Lola';
adddog.find('#imageURL').at(0).getDOMNode().value =

'https:// static.pexels.com/photos/54386/pexels-
photo-54386.jpeg';

adddog.find('#dogBreed').at(0).getDOMNode().value =
'Beagle';

 const form = adddog.find('form');
 form.simulate('submit');
 expect(wrapper.find('Dogs')

 .find('DogItem')).length(3);
 expect(wrapper.state().dogs[2].name == 'Lola');

});

Simulate the rest of the form

it("successfully adds dog to list when form submitted",
function() {

const wrapper = mount(<App/>);
const adddog = wrapper.find('AddDog');

adddog.find('#dogName').at(0).getDOMNode().value = 'Lola';
adddog.find('#imageURL').at(0).getDOMNode().value =

'https:// static.pexels.com/photos/54386/pexels-
photo-54386.jpeg';

adddog.find('#dogBreed').at(0).getDOMNode().value =
'Beagle';

 const form = adddog.find('form');
 form.simulate('submit');
 expect(wrapper.find('Dogs')

 .find('DogItem')).length(3);
 expect(wrapper.state().dogs[2].name == 'Lola');

});

simulate the submission the form (no need to simulate the add button)

it("successfully adds dog to list when form submitted",
function() {

const wrapper = mount(<App/>);
const adddog = wrapper.find('AddDog');

adddog.find('#dogName').at(0).getDOMNode().value = 'Lola';
adddog.find('#imageURL').at(0).getDOMNode().value =

'https:// static.pexels.com/photos/54386/pexels-
photo-54386.jpeg';

adddog.find('#dogBreed').at(0).getDOMNode().value =
'Beagle';

 const form = adddog.find('form');
 form.simulate('submit');
 expect(wrapper.find('Dogs')

 .find('DogItem')).length(3);
 expect(wrapper.state().dogs[2].name == 'Lola');

});

now we expect to have three dog items (originally was 2)

it("successfully adds dog to list when form submitted",
function() {

const wrapper = mount(<App/>);
const adddog = wrapper.find('AddDog');

adddog.find('#dogName').at(0).getDOMNode().value = 'Lola';
adddog.find('#imageURL').at(0).getDOMNode().value =

'https:// static.pexels.com/photos/54386/pexels-
photo-54386.jpeg';

adddog.find('#dogBreed').at(0).getDOMNode().value =
'Beagle';

 const form = adddog.find('form');
 form.simulate('submit');
 expect(wrapper.find('Dogs')

 .find('DogItem')).length(3);
 expect(wrapper.state().dogs[2].name == 'Lola');

});

state() function get access to the app component’s state

Let's see what happens when we try to delete one of
the dogs by clicking on the link that was next to the
dog's breed.

Testing Links

it('removes dog from list when deleted', function() {
const wrapper = mount(<App/>);
const deleteLink = wrapper.find('a').first();

deleteLink.simulate('click');

expect(wrapper.find('Dogs')
.find('DogItem')).length(1);

});

Testing Links

it('removes dog from list when deleted', function() {
const wrapper = mount(<App/>);
const deleteLink = wrapper.find('a').first();

deleteLink.simulate('click');

expect(wrapper.find('Dogs')
.find('DogItem')).length(1);

});

find a link using a for the anchor
We'll get the first link that we find, this will be the delete link

Testing Links

it('removes dog from list when deleted', function() {
const wrapper = mount(<App/>);
const deleteLink = wrapper.find('a').first();

deleteLink.simulate('click');

expect(wrapper.find('Dogs')
.find('DogItem')).length(1);

});

simulate clicking on that link

Testing Links

it('removes dog from list when deleted', function() {
const wrapper = mount(<App/>);
const deleteLink = wrapper.find('a').first();

deleteLink.simulate('click');

expect(wrapper.find('Dogs')
.find('DogItem')).length(1);

});

now we expect to have 1 dog
note that each test case starts with the original state

Running Tests

• To run tests, navigate to the project within the
terminal and run the following command:

npm run test

Running Tests: Success!

Summary
• We can use Node.js to create React applications

• This allows us to put component code into
separate .js files and then include them into our
App as necessary

• Mocha, Chai, and Enzyme can be used for
testing our React apps

