
SENG 4640
Software Engineering for Web Apps

Winter 2023

Sina Keshvadi
Thompson Rivers University

React Components

Review
• React allows us to create custom components and

insert them into the VirtualDOM in our HTML page

• This allows for selective rendering and modular
development of dynamic behavior

React Components
•Components are JavaScript objects based off the
React.Component prototype

•Components define properties, event-based state
variables, and callback functions

•A component’s render() function is used to
render its HTML

•VirtualDOM manages each component’s lifecycle
and calls its render() function as needed

Creating Custom Components – ES6
• ES6 is a more recent version of JavaScript syntax
• We can define a class instead of a single object

 <div id="container"></div>
 <script type="text/babel">
 class HelloReact extends React.Component {
 render() {
 return (
 <h1>Hello React!</h1>
);
 }
 }
 ReactDOM.render(
 <HelloReact />,
 document.getElementById("divHello")
)
 </script>

ex02.html

Creating Custom Components – ES6
• ES6 is a more recent version of JavaScript syntax
• We can define a class instead of a single object

 <div id="container"></div>
 <script type="text/babel">
 class HelloReact extends React.Component {
 render() {
 return (
 <h1>Hello React!</h1>
);
 }
 }
 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<HelloReact />);

 </script>

ex02.html

Creating Custom Components – ES6
• ES6 is a more recent version of JavaScript syntax
• We can define a class instead of a single object

 <div id="container"></div>
 <script type="text/babel">
 class HelloReact extends React.Component {
 render() {
 return (
 <h1>Hello React!</h1>
);
 }
 }
 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<HelloReact />);

 </script>

ex02.html

Creating Custom Components – ES6
• ES6 is a more recent version of JavaScript syntax
• We can define a class instead of a single object

 <div id="container"></div>
 <script type="text/babel">
 class HelloReact extends React.Component {
 render() {
 return (
 <h1>Hello React!</h1>
);
 }
 }
 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<HelloReact />);

 </script>

ex02.html

Creating Custom Components – ES6
• ES6 is a more recent version of JavaScript syntax
• We can define a class instead of a single object

 <div id="container"></div>
 <script type="text/babel">
 class HelloReact extends React.Component {
 render() {
 return (
 <h1>Hello React!</h1>
);
 }
 }
 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<HelloReact />);

 </script>

ex02.html

Creating Custom Components – ES6
• ES6 is a more recent version of JavaScript syntax
• We can define a class instead of a single object

 <div id="container"></div>
 <script type="text/babel">
 class HelloReact extends React.Component {
 render() {
 return (
 <h1>Hello React!</h1>
);
 }
 }
 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<HelloReact />);

 </script>

ex02.html

Creating Custom Components – ES6
• ES6 is a more recent version of JavaScript syntax
• We can define a class instead of a single object

 <div id="container"></div>
 <script type="text/babel">
 class HelloReact extends React.Component {
 render() {
 return (
 <h1>Hello React!</h1>
);
 }
 }
 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<HelloReact />);

 </script>

ex02.html

Creating Custom Components – ES6
• ES6 is a more recent version of JavaScript syntax
• We can define a class instead of a single object

 <div id="container"></div>
 <script type="text/babel">
 class HelloReact extends React.Component {
 render() {
 return (
 <h1>Hello React!</h1>
);
 }
 }
 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<HelloReact />);

 </script>

ex02.html

React Component Attributes
•Properties

• Attributes and values that are set when the component
is created

• Should never be modified after initialization

React Component Attributes
•Properties

• Attributes and values that are set when the component
is created

• Should never be modified after initialization

•State
• Attributes and values that represent the current state of

the component, based on what it does/represents
• Can be modified during the component’s lifecycle

React Component Attributes
•Properties

• Attributes and values that are set when the component
is created

• Should never be modified after initialization

•State
• Attributes and values that represent the current state of

the component, based on what it does/represents
• Can be modified during the component’s lifecycle

•Both properties and state can be used when
rendering the component

Component Properties
• Should always be assigned upon object

creation, never modified afterward
• Component accesses its properties through
this.props

Component Properties
• Component accesses its properties through
this.props

<body>
 <div id="container"></div>
 <script type="text/babel">
 class HelloUser extends React.Component{
 render(){
 return(
 <h1>Hello {this.props.name}!</h1>
);
 }
 }

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<HelloUser name="Maria" />);

 </script>
</body>

ex03.html

Component Properties
• Component accesses its properties through
this.props

<body>
 <div id="container"></div>
 <script type="text/babel">
 class HelloUser extends React.Component{
 render(){
 return(
 <h1>Hello {this.props.name}!</h1>
);
 }
 }

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<HelloUser name="Maria" />);

 </script>
</body>

ex03.html

Component Properties
• Component accesses its properties through
this.props

<body>
 <div id="container"></div>
 <script type="text/babel">
 class HelloUser extends React.Component{
 render(){
 return(
 <h1>Hello {this.props.name}!</h1>
);
 }
 }

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<HelloUser name="Maria" />);

 </script>
</body>

ex03.html

Component Properties
• Component accesses its properties through
this.props

<body>
 <div id="container"></div>
 <script type="text/babel">
 class HelloUser extends React.Component{
 render(){
 return(
 <h1>Hello {this.props.name}!</h1>
);
 }
 }

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<HelloUser name="Maria" />);

 </script>
</body>

ex03.html

Component Properties
• Component accesses its properties through
this.props

<body>
 <div id="container"></div>
 <script type="text/babel">
 class HelloUser extends React.Component{
 render(){
 return(
 <h1>Hello {this.props.name}!</h1>
);
 }
 }

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<HelloUser name="Maria" />);

 </script>
</body>

ex03.html

Component Properties
• Component accesses its properties through
this.props

<body>
 <div id="container"></div>
 <script type="text/babel">
 class HelloUser extends React.Component{
 render(){
 return(
 <h1>Hello {this.props.name}!</h1>
);
 }
 }

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<HelloUser name="Maria" />);

 </script>
</body>

ex03.html

Component State

• The set of variables that can change during the
component’s lifecycle

• Should be initialized in the constructor

• Component accesses its state through this.state

Page Visit Counter using React

<body>
 Visited
 <script type="text/babel">
 class TimesVisited extends React.Component {
 constructor (props){
 super (props);
 var timeViewed = 0;
 if(localStorage.timeViewed){
 timeViewed = localStorage.timeViewed;
 }
 timeViewed ++;
 this.state = {numViews:timeViewed};
 localStorage.timeViewed = timeViewed;
 }

 render (){
 return {this.state.numViews};
 }
 };

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<TimesVisited />);

 </script>
</body> ex04.html

<body>
 Visited
 <script type="text/babel">
 class TimesVisited extends React.Component {
 constructor (props){
 super (props);
 var timeViewed = 0;
 if(localStorage.timeViewed){
 timeViewed = localStorage.timeViewed;
 }
 timeViewed ++;
 this.state = {numViews:timeViewed};
 localStorage.timeViewed = timeViewed;
 }

 render (){
 return {this.state.numViews};
 }
 };

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<TimesVisited />);

 </script>
</body> ex04.html

<body>
 Visited
 <script type="text/babel">
 class TimesVisited extends React.Component {
 constructor (props){
 super (props);
 var timeViewed = 0;
 if(localStorage.timeViewed){
 timeViewed = localStorage.timeViewed;
 }
 timeViewed ++;
 this.state = {numViews:timeViewed};
 localStorage.timeViewed = timeViewed;
 }

 render (){
 return {this.state.numViews};
 }
 };

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<TimesVisited />);

 </script>
</body> ex04.html

<body>
 Visited
 <script type="text/babel">
 class TimesVisited extends React.Component {
 constructor (props){
 super (props);
 var timeViewed = 0;
 if(localStorage.timeViewed){
 timeViewed = localStorage.timeViewed;
 }
 timeViewed ++;
 this.state = {numViews:timeViewed};
 localStorage.timeViewed = timeViewed;
 }

 render (){
 return {this.state.numViews};
 }
 };

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<TimesVisited />);

 </script>
</body> ex04.html

<body>
 Visited
 <script type="text/babel">
 class TimesVisited extends React.Component {
 constructor (props){
 super (props);
 var timeViewed = 0;
 if(localStorage.timeViewed){
 timeViewed = localStorage.timeViewed;
 }
 timeViewed ++;
 this.state = {numViews:timeViewed};
 localStorage.timeViewed = timeViewed;
 }

 render (){
 return {this.state.numViews};
 }
 };

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<TimesVisited />);

 </script>
</body>

<body>
 Visited
 <script type="text/babel">
 class TimesVisited extends React.Component {
 constructor (props){
 super (props);
 var timeViewed = 0;
 if(localStorage.timeViewed){
 timeViewed = localStorage.timeViewed;
 }
 timeViewed ++;
 this.state = {numViews:timeViewed};
 localStorage.timeViewed = timeViewed;
 }

 render (){
 return {this.state.numViews};
 }
 };

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<TimesVisited />);

 </script>
</body>

<body>
 Visited
 <script type="text/babel">
 class TimesVisited extends React.Component {
 constructor (props){
 super (props);
 var timeViewed = 0;
 if(localStorage.timeViewed){
 timeViewed = localStorage.timeViewed;
 }
 timeViewed ++;
 this.state = {numViews:timeViewed};
 localStorage.timeViewed = timeViewed;
 }

 render (){
 return {this.state.numViews};
 }
 };

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<TimesVisited />);

 </script>
</body>

<body>
 Visited
 <script type="text/babel">
 class TimesVisited extends React.Component {
 constructor (props){
 super (props);
 var timeViewed = 0;
 if(localStorage.timeViewed){
 timeViewed = localStorage.timeViewed;
 }
 timeViewed ++;
 this.state = {numViews:timeViewed};
 localStorage.timeViewed = timeViewed;
 }

 render (){
 return {this.state.numViews};
 }
 };

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<TimesVisited />);

 </script>
</body>

<body>
 Visited
 <script type="text/babel">
 class TimesVisited extends React.Component {
 constructor (props){
 super (props);
 var timeViewed = 0;
 if(localStorage.timeViewed){
 timeViewed = localStorage.timeViewed;
 }
 timeViewed ++;
 this.state = {numViews:timeViewed};
 localStorage.timeViewed = timeViewed;
 }

 render (){
 return {this.state.numViews};
 }
 };

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<TimesVisited />);

 </script>
</body>

<body>
 Visited
 <script type="text/babel">
 class TimesVisited extends React.Component {
 constructor (props){
 super (props);
 var timeViewed = 0;
 if(localStorage.timeViewed){
 timeViewed = localStorage.timeViewed;
 }
 timeViewed ++;
 this.state = {numViews:timeViewed};
 localStorage.timeViewed = timeViewed;
 }

 render (){
 return {this.state.numViews};
 }
 };

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<TimesVisited />);

 </script>
</body>

<body>
 Visited
 <script type="text/babel">
 class TimesVisited extends React.Component {
 constructor (props){
 super (props);
 var timeViewed = 0;
 if(localStorage.timeViewed){
 timeViewed = localStorage.timeViewed;
 }
 timeViewed ++;
 this.state = {numViews:timeViewed};
 localStorage.timeViewed = timeViewed;
 }

 render (){
 return {this.state.numViews};
 }
 };

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<TimesVisited />);

 </script>
</body>

<body>
 Visited
 <script type="text/babel">
 class TimesVisited extends React.Component {
 constructor (props){
 super (props);
 var timeViewed = 0;
 if(localStorage.timeViewed){
 timeViewed = localStorage.timeViewed;
 }
 timeViewed ++;
 this.state = {numViews:timeViewed};
 localStorage.timeViewed = timeViewed;
 }

 render (){
 return {this.state.numViews};
 }
 };

 ReactDOM.
 createRoot(document.getElementById("container")).
 render(<TimesVisited />);

 </script>
</body>

Component Lifecycle

• The React VirtualDOM invokes callback
functions on components during their lifecycle

• These functions fall into three categories:
• Mounting
• Updating
• Unmounting

• You can optionally implement these for
controlling the component

Component Lifecycle: Mounting

• Called when a component is being created and
added to the VirtualDOM

• constructor: creates component, initializes
state based on properties

• componentWillMount: invoked
before component is added to
VirtualDOM

• componentDidMount: invoked after
component has been added to VirtualDOM and
has been rendered

Component Lifecycle: Updating

• Called when a component’s props or state is
changing and the component is re-rendered

• componentWillReceiveProps: invoked
before receiving new props, e.g. when its parent
component re-renders

• shouldComponentUpdate: can be used
to determine whether to re-render

• componentWillUpdate: invoked before re-
rendering after change to state

• componentDidUpdate: invoked after being re-
rendered

Component Lifecycle: Unmounting

• Called when a component is being removed
from the VirtualDOM

• componentWillUnmount: invoked before
component is removed from VirtualDOM and
destroyed

Summary
•React components are JavaScript objects that can
be used as HTML elements in the VirtualDOM

•A component’s render() function is used to
render its HTML
•A component’s properties are assigned when it is
created
•A component’s state can change during its
lifecycle
•A component’s lifecycle functions are invoked
depending on relevant activities

