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Detecting Attacks

prevention eventually fails

so we need detection, response, and containment

expect that attacks will happen

detect an attack, stop it, clean up mess
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Even if we think our system is solid…

it’s prudent to have mechanisms in case

DEFENCE IN DEPTH



Example

● you have a webserver that has request like
○ foo.com/getdata?profile=info/user.txt

● what if the user sent
○ profile=../../../../etc/passwd

● you can fix the getdata script, but what about a backup just in case?



Network Intrusion detection system (NIDS)

● look at all the network traffic

● scan for HTTP requests

● look for things like “/etc/passwd” or “../”

● shutdown those connections that do that



NIDS advantages

● does not touch end systems
○ sometimes you have to let legacy code just run

○ you can “bolt on” security

● is cheap to do
○ firewall already looks at the packets, this just runs in the same pipeline

○ central control over all services



NIDS disadvantages

● scan for /etc/passwd
○ what about all the other files?
○ what about /etc/./passwd

● in some sense must “execute” attack

● scan for ../
○ what if its in legitimate requests?

● false positive
○ what about %2e%2e%2f

● evasion

● what if it’s in HTTPS and not HTTP
○ now you need to access decrypted data and know session key



Host-Based IDS (HIDS)

● instrument the web server
○ scan all the HTTP ?arguments after decrypting

○ do this before running the legacy programs to process it



HIDS Pros/Cons

● pros
○ no problem with HTTP things like %2e

○ works for HTTPS without having to do complex stuff

● cons
○ have to add code to each web server

○ only detects web server attacks

○ still have to consider other files



Approach 3: Logs

● store log files for all web servers on a computer

● run each night, scan all the arguments

● EVIDENCE PRODUCTION

● pros
○ cheap, web servers already do logging

○ no problems like %2e and HTTPS



Log Analysis Cons

● still need to consider other files, ../, etc.

● can’t block attacks and prevent them

● detection is delayed, so damage may compound
○ e.g., password file exposed, then they log in

● attacker may be able to tamper with the logs before they are 

analyzed



Approach 4: Monitor system calls

● look for all FS accesses of /etc/passwd

● most programs shouldn’t read this file

● pros
○ deals with HTTP, HTTPS, filename tricks

○ alerts (probably) correspond to successful attacks

○ can stop attack at that time



Monitor system calls (con’t)

● cons
○ looking at all FS accesses or syscalls is huge amount of data

○ could alert on legitimate accesses to the files

● false positives

● sometimes you need password file

○ maybe we still want to detect attempts even if they fail

● situational awareness

● attack traffic looks like this

● this IP is sending evil packets to a secure server

● they may send evil packets to insecure ones too



NIDS vs. HIDS

● NIDS benefits
○ cover a lot of systems with one deployment

○ no touching end systems

○ doesn’t use production resources

○ harder to subvert

● HIDS benefits
○ direct access to semantics of activity

○ can protect against non-network threats

○ visibility into encrypted activity

○ performance scales readily



Detecting Deviant Behaviour:

how do we generalize the

reading of /etc/passwd

as the concept of finding

bad activity?



Signature-Based Detection

● look for activity that matches a known attack

● script kiddies run scripts that do the attacks
○ these attacks are known and can be recognized

● simple approach, but blind to novel attacks and variants

● typically consider syntax and not semantics



Anomaly-Based Detection

● build a model of normal usage
○ call this function, then that, then that

○ e.g., addItem(), shoppingCart(), pay()

● flag activity that deviates from it
○ can use ML on all log data to build model

● if you don’t have many attack examples, you will have false positives



Specification-Based Detection

● don’t learn what’s normal: specify it
○ only login, su, sudo, passwd can open /etc/passwd
○ filename to have at most one ‘/’

■ and no .., , first char not /
○ file about to be opened must have A+RW

● can detect novel attacks
● has low false positives

○ can be discovered in testing

● problem: expensive
○ labour to create specs
○ labour to update specs
○ false negatives may still persist



Behaviour-Based Detection

● don’t look for attacks:
○ look for evidence of compromise

● password example
○ look for outgoing packets with lines from file

● look for things that an attacker does
○ unset HISTFILE (system’s history file)

○ look for system calls that the compiled program never calls

○ or doesn’t call in some order



Honeypot-Based Detection

● deploy a sacrificial system that has no operational purpose
○ some computer that runs services but no one in the network uses

● any access is by definition not authorized
○ and thus an intruder (or a mistake)



Honeypots

● identify and track intruders

● study what they’re up to

● divert them from legitimate targets

● can be hard to lure attacker

● can be a lot of work to make the environment convincing


