
Software Security Engineering

Winter 2023
Thompson Rivers University

Clickjacking
Lecture 14





Clickjacking

● portmanteau of “click hijacking”

● attacker overlays multiple transparent or opaque frames
○ trick a user into clicking a button or link on another page

● circumvents same-origin policy
○ malicious page cannot click the link itself



Clickjacking in the Wild:

Facebook worm superimposes invisible iframe

over entire page that links to victim’s Facebook page



Clickjacking in the Wild:

Facebook worm superimposes invisible iframe

over entire page that links to victim’s Facebook page

If victim is logged in, automatically recommends

link to new friends as soon as it is clicked on.





Twitter Clickjack

Users send out tweets against their will.



Twitter Clickjack

Users send out tweets against their will.

Users are tricked into clicking a post-to-twitter link.



Twitter Clickjack

Users send out tweets against their will.

Users are tricked into clicking a post-to-twitter link.

Works if they are logged in



Likejacking: clickjacking in the

context of the Facebook like button.



But wait: how isn’t this just XSRF?



Clickjacking attack: when a user’s mouse click

is used in a way that was not intended by user.



<a onMouseDown=window.open(http://www.evil.com)

href=http://www.google.com/> anchor text </a>

● anchor goes to evil.com

● why the google.com?

Simple Example



iframes

● any website can frame any other website
○ have a subwindow or such that shows its content

● main frame does not need to handle all the logic of managing two 
things
○ subframe can be its own session, links clicking, changing page, etc.

● <iframe src=“http://www.google.com/...”> </iframe>
○ HTML attributes include OPACITY (percentage visible)

● 1.0: totally visible
● 0.0: totally invisible

○ z-index: position on the stack (top gets clicks)
○ pointer-event: set to none to say ignore click (goes to next)



Drag-and-Drop Abuse

● same origin policy stops the html page to “see” what the user selects 

in an iframe
○ e.g., iframe_text_field.textContents throws an exception

● but selected text can be dragged into an object despite same origin
○ motive is that user does this deliberately

○ i.e., mouse events cannot be spoofed



How can this be exploited?





Abusing Drag-n-Drop

● only need to get the user to drag and drop for any reason

● hidden iframes will load the data that the evil site wants

● destination will be an HTML object within the evil site’s control

● user is tricked into circumventing same origin policy



Cursorjacking

● mouse cursor can be turned off in the web browser
○ CSS CURSOR property supports “none”

● then create another cursor in javascript that follows the mouse 

movement
○ different looking cursors won’t necessary be suspicious

○ though different cursor physics will be noticable





Strokejacking: suppose that bank.com

needed the user to enter in numbers

for an amount to do a bank transfer.



Strokejacking: suppose that bank.com

needed the user to enter in numbers

for an amount to do a bank transfer.

That is, clicks aren’t enough:

the user has to hit keys.



Strokejacking: suppose that bank.com

needed the user to enter in numbers

for an amount to do a bank transfer.

That is, clicks aren’t enough:

the user has to hit keys.

SOP stops this from being faked.



Strokejacking

● site convinces the user to type some keystrokes on a simulated input 

field

● actual keystrokes being sent to the iframe that needs it

● e.g., numbers become the amount to send.

● how could the user be tricked?



All these attacks conspire to break SOP.



All these attacks conspire to break SOP.

They require human effort to click or type

and the user is being tricked into doing that.



Compromise Temporal Integrity

● temporal integrity refers to the state remaining the same in time
○ security issue involving something changing after security check is done but 

before something being allowed by that check is done

○ TOCTTOU: time of check to time of use

● for clickjacking, it means changing the UI after the user decides to 

click but before the click occurs
○ e.g., if logic executes on onClick, then change UI on mouseDown

○ e.g., bait the user to double click, and swap the UI between them



Temporal Integrity



Whack-A-Mole Attack

● bait the user to click as fast as possible

● switch to a different UI button when appropriate



Lots of choices! How do we stop this?



Solution: user confirmation



Solution: user confirmation

Good site pops up dialogue box with info

about what it is about to do and confirms



Solution: user confirmation

Good site pops up dialogue box with info

about what it is about to do and confirms

awful user experience



Solution: UI Randomization



Good site embeds form elements at random locations

so it is hard to overlay



Good site embeds form elements at random locations

so it is hard to overlay

e.g., paypal pay button always in different location



Good site embeds form elements at random locations

so it is hard to overlay

e.g., paypal pay button always in different location

awful user experience

multi-click attack



Solution: Opaque Policy



Solution: Opaque Policy

no element can be transparent

each pixel belongs to a single element



Solution: Opaque Policy

no element can be transparent

each pixel belongs to a single element

any problems?



● don’t completely cover the target

● instead hide the important parts
○ e.g., message that you mean to post

○ e.g., amount that your credit card is charged

Partial Overlaps and Cropping



Solution: Frame Busting



Solution: Frame Busting

I am the page owner (what gets put in iframe)



Solution: Frame Busting

I am the page owner (what gets put in iframe)

I insist that I am never loaded in an iframe



Solution: Frame Busting

I am the page owner (what gets put in iframe)

I insist that I am never loaded in an iframe

if (top != self) top.location.href = location.href;



● conditional check for iframing
○ take counter-action if iframing is detected

○ then no user behaviour on site is result of clickjacking

● doesn’t work for embedded stuff like facebook “like” buttons but oh 

well

Frame Busting



So clickjacking is solved!



Frame Busting in the Wild

● survey of practices by Gustav Rydstedt, Elie Bursztein, Dan Boneh, 

and Collin Jackson

● looked at Alexa top 500 websites and all top US banks

● 14% use framebusting

● found 100% of framebusting can be circumvented one way or 

another
○ oops

○ some browser specific

○ some cross browser



Frequently it was in the code to allow their own iframes



Frequently it was in the code to allow their own iframes

i.e., I don’t want to be an iframe, but I want to have my

own things as iframes



Frequently it was in the code to allow their own iframes

i.e., I don’t want to be an iframe, but I want to have my

own things as iframes

and they are okay with being iframes as long as I’m still

the main frame.



Frequently it was in the code to allow their own iframes

i.e., I don’t want to be an iframe, but I want to have my

own things as iframes

and they are okay with being iframes as long as I’m still

the main frame.

This policy can be hard to implement.



if (top.location != location)

if (document.referrer && document.referrer.indexOf(”walmart.com”) == -1)

top.location.replace(document.location.href);

Walmart’s Framebusting



Error in Referrer Checking:

website http://www.attacker.com/walmart.com.html has the iframe



if (window.self != window.top &&

!document.referrer.match(/https?://[ˆ?\/]+\.nytimes\.com\//))

self.location = top.location;

The New York Times’s Framebusting



Error in Referer Checking:

website

http://eve.com/a.html?b=https://www.nytimes.com/

has the iframe



if (self != top)

var domain = getDomain(document.referrer);

var okDomains = /usbank|localhost|usbnet/;

var matchDomain = domain.search(okDomains);

if (matchDomain == -1)

// frame bust

US Bank’s Framebusting



Error in Referer Checking:

website 

http://usbank.attacker.com 

has the iframe



Error in Referer Checking:

website 

http://usbank.attacker.com 

has the iframe

or the Norwegian State House Bank

http://www.husbanken.no



Error in Referer Checking:

website 

http://usbank.attacker.com 

has the iframe

or the Norwegian State House Bank

http://www.husbanken.no

or the Rusbank http://www.rusbank.org

(it's actually Rosbank, but still)



Typical Frame Busting code:

if (parent.location != self.location)

parent.location = self.location



Double Framing Attack:

main frame has <iframe src=“frame2.html”>



Double Framing Attack:

main frame has <iframe src=“frame2.html”>

frame2.html has <iframe src=“victim.com”>



A fix?

if (top.location != self.location)

top.location = self.location



Location Clobbering

● IE7: var location=“clobbered”;

● Safari: window.__defineSetter__(“location”, function(){})



Asking Nicely



Frame busting from Paypal will be

cancelled if the user clicks cancel.



Frame busting from Paypal will be

cancelled if the user clicks cancel.

The pop-up is actually the

iframer’s onbeforeunload function.

The onbeforeunload event occurs when a document is about to be unloaded.



● style html’s body as “display: none”

● try to framebust if “self != top”

● change style to “display: block” if “self == top”

Best at the time



Now going forward

● X-Frame-Options HTTP header sent with page

● two possible values: DENY and SAMEORIGIN

● DENY: page will not render if framed

● SAMEORIGIN: page will only render if top frame has same origin

● up to sites to support


