
Software Security Engineering

Winter 2023
Thompson Rivers University

Code Injection Attacks
Lecture 13



Server Side of Web Applications

● runs on a web server (application server)

● takes input from remote users via Web server

● interacts with back-end database and other servers
○ side effects: new data stored, functions called

● prepares and outputs results for users
○ dynamically generated HTML

○ content from different sources



Problem: scripting languages allow execution of strings.



Problem: scripting languages allow execution of strings.

Code is Data and Data is Code.



Problem: scripting languages allow execution of strings.

Code is Data and Data is Code.

This is true of C as well: buffer overflow, system()



Problem: scripting languages allow execution of strings.

Code is Data and Data is Code.

This is true of C as well: buffer overflow, system()

But scripting languages makes it easy

e.g., exec(‘a = 4’)



Example: PHP

● PHP: Hypertext Preprocessor (PHP)

● server scripting language, C-like, intermixed with HTML

● e.g., <input value=<?php echo $myvalue; ?>>

● can embed variables in double-quote strings
○ $user=“world”;

○ echo “hello $user”;

○ or echo “hello” . $user;



● server-side PHP calculator
○ $in = USER INPUT VAL

○ eval(‘$op1 = ’ . $in . ‘;’);

● the website only issues HTML calls like
○ http://victim.com/calc.php?val=5

○ it executes: eval(‘$op1=5;’);

Command Injection



But adversary can exhibit arbitrary behaviours!



But adversary can exhibit arbitrary behaviours!

http://victim.com/calc.php?val=5 ; system(’rm -rf /’)



But adversary can exhibit arbitrary behaviours!

http://victim.com/calc.php?val=5 ; system(’rm -rf /’)

it executes: eval(‘$op1=5; system(’rm -rf /’););

oops!



Another PHP Example

● PHP server-side code for sending email:
○ $email = GET EMAIL

○ system(“mail $email < /tmp/default_email_body”)

● normal call
○ http://victim.com/send_invite/php?email=decent@person.com

● adversarial call
○ http://victim.com/send_invite/php?email=evil@person.com < /usr/passwd; cat

● what happened? why did it happen? how can you stop it?



This is an example of input validation vulnerability



This is an example of input validation vulnerability

Server was expecting a string of a certain form, such as

one in the database of users.



This is an example of input validation vulnerability

Server was expecting a string of a certain form, such as

one in the database of users.

Assumption string does not have control characters.



This is an example of input validation vulnerability

Server was expecting a string of a certain form, such as

one in the database of users.

Assumption string does not have control characters.

Solution is simple: don’t trust any input,

and validate all assumptions.



This is an example of input validation vulnerability

Server was expecting a string of a certain form, such as

one in the database of users.

Assumption string does not have control characters.

Solution is simple: don’t trust any input,

and validate all assumptions.

Input from users should be treated as hostile.



Structured Query Language (SQL)

● widely used database query language

● fetch data: SELECT * FROM table WHERE something=‘value’

● add data: INSERT INTO table (col1, col2) VALUES (val1, val2)

● modify, delete, etc.

● syntax is standardized, independent of the database



Typical Query Generation Code

● $selected_user = (get user input)

● $sql_query = “SELECT username, key FROM keys WHERE 

username=‘$selected_user’ ”;

● $result = $db->executeQuery($sql);



What if ‘user’ is a malicious string that changes the

meaning of the query?



Typical Login Prompt



Browser sends ‘user’,

web server creates SQL,

DB executes SQL



Malicious Login



SQL Injection Attack

● provided input is:
○ ‘foo’; DROP TABLE USERS; −−’

● executed query is
○ SELECT username, key FROM keys WHERE username=foo’; DROP TABLE USERS; 

−−
● this deletes the table name USERS

● oops.



Authentication to DB

set user found = execute(“SELECT * FROM users WHERE username=‘ ” & 

form(“user”) & “’ AND password=‘ ” & form(“pwd”) & “’ ”);

if (size(user found) != 0)

return AUTHENTICATE SUCCESS



Authentication to DB

set user found = execute(“SELECT * FROM users WHERE username=‘ ” & 

form(“user”) & “’ AND password=‘ ” & form(“pwd”) & “’ ”);

if (size(user found) != 0)

return AUTHENTICATE SUCCESS

user provides username and password,

this query looks up the combination



Authentication to DB

set user found = execute(“SELECT * FROM users WHERE username=‘ ” & 

form(“user”) & “’ AND password=‘ ” & form(“pwd”) & “’ ”);

if (size(user found) != 0)

return AUTHENTICATE SUCCESS

user provides username and password,

this query looks up the combination

if there is one row in user found,

authentication is correct!



● user gives username: ’ OR 1=1 −−
● web server executes SELECT * FROM users WHERE username=‘’ OR 

1=1 −− blahblah
○ now everything matches (why?)

○ user is found (why?)

○ authentication successful (why?)

Attack on Authentication



● SELECT * WHERE user=‘name’ AND pwd=‘passwd’

● user gives for both name and passwd:
○ ’OR WHERE pwd LIKE ‘%

● server runs:
○ SELECT * WHERE user=‘’ OR WHERE pwd LIKE ‘%’ AND pwd = ‘’ OR WHERE pwd 

LIKE ‘%’

○ the % is a wildcard, it matched anything

Another Example



Result of this:

logs into the database with the

credentials of the first person in DB



Result of this:

logs into the database with the

credentials of the first person in DB

this is usually the administrator!



Result of this:

logs into the database with the

credentials of the first person in DB

this is usually the administrator!

PRIVILEGE ESCALATION



Pull Data from other Database

username: ’ AND 1 = 0 UNION SELECT cardholder,

number, exp_month, exp_year FROM creditcards



Pull Data from other Database

username: ’ AND 1 = 0 UNION SELECT cardholder,

number, exp_month, exp_year FROM creditcards

results of both queries are combined and returned



Create User

username: ’; INSERT INTO USERS (...) VALUES (...);



Create User

username: ’; INSERT INTO USERS (...) VALUES (...);

WHERE email=victim@tru.ca



Second-Order SQL Injection

● code as data can be stored now but executed later
○ inconsistency in checking

● user sets username to: admin’ −−
○ suppose that DB builds the query correctly

○ the quote in the username does not terminate the query but the username is 

set as above

■ i.e., it is properly escaped at the time

● user then changes their password
○ perhaps not through a web frontend

○ UPDATE USERS SET passwd=‘evil’ WHERE uname=‘admin’ −−’



Preventing SQL Injection

● validate all inputs
○ filter out any character that has special meaning

● apostrophes, semicolons, percents, hyphens, underscores

○ check the data type

● all assumptions must be checked

○ use libraries designed to do this instead of doing it yourself

● FULL MEDIATION



Preventing SQL Injection

● allow list permitted characters
○ block listing bad ones doesn’t work

○ safe defaults

○ set well-defined set of safe values

○ match with regular expressions



Escaping Quotes

● special characters like ’ blur code and data

● but can occur in names: O’Brian

● these must be escaped in the input
○ functions to do this: escape(o’connor) → o\’connor

○ don’t do this ad hoc

○ don’t just replace ’ with \’ (why?)



Prepared Statements

● SQL injection comes about because queries are created by string 

concatenations

● this elevates user-provided input to the importance level of backend 

code written by trusted engineers
○ both strings are equal components to the resulting query

○ both strings can be data or code

○ user-provided input should be only data, not code



Prepared Statements

● bind variables
○ placeholders guaranteed to be data

● prepared statements
○ static scaffolds of SQL with bind variables to be filled in



Prepared Statements Example (pseudo syntax)

● String query = “SELECT * FROM table WHERE userid=?”;

● PreparedStatement ps = db.prepareStatement(query);

● ps.setInt(1, session.getCurrentUserId());

● ResultSet = ps.executeQuery();


