Software Security Engineering

Winter 2023
Thompson Rivers University

runs on a web server (application server)

takes input from remote users via Web server

interacts with back-end database and other servers
side effects: new data stored, functions called

prepares and outputs results for users

dynamically generated HTML
content from different sources

Problem: scripting languages allow execution of strings.

Problem: scripting languages allow execution of strings.

Code is Data and Data is Code.

Problem: scripting languages allow execution of strings.
Code is Data and Data is Code.

This is true of C as well: buffer overflow, system()

Problem: scripting languages allow execution of strings.
Code is Data and Data is Code.
This is true of C as well: buffer overflow, system()
But scripting languages makes it easy

e.g., exec(a=4")

PHP: Hypertext Preprocessor (PHP)

server scripting language, C-like, intermixed with HTML
e.g., <input value=<?php echo Smyvalue; ?>>

can embed variables in double-quote strings

Suser="“world”;
echo “hello Suser”;
or echo “hello” . Suser;

server-side PHP calculator
Sin = USER INPUT VAL
eval(‘Sopl=".Sin."');

the website only issues HTML calls like
http://victim.com/calc.php?val=5
it executes: eval(‘Sop1=5;’);

But adversary can exhibit behaviours!

But adversary can exhibit behaviours!

http://victim.com/calc.php?val=5 ; system('rm -rf /)

But adversary can exhibit behaviours!
http://victim.com/calc.php?val=5 ; system('rm -rf /)
it executes: eval(‘Sop1=5; system('rm -rf /’););

oops!

PHP server-side code for sending email:
Semail = GET EMAIL
system(“mail Semail < /tmp/default_email_body”)

normal call
http://victim.com/send_invite/php?email=decent@person.com

adversarial call
http://victim.com/send_invite/php?email=evil@person.com < /usr/passwd; cat

what happened? why did it happen? how can you stop it?

This is an example of input validation vulnerability

This is an example of input validation vulnerability

Server was expecting a string of a certain form, such as
one in the database of users.

This is an example of input validation vulnerability

Server was expecting a string of a certain form, such as
one in the database of users.

Assumption string does not have control characters.

This is an example of input validation vulnerability

Server was expecting a string of a certain form, such as
one in the database of users.

Assumption string does not have control characters.

Solution is simple: don’t trust any input,
and validate all assumptions.

This is an example of input validation vulnerability

Server was expecting a string of a certain form, such as
one in the database of users.

Assumption string does not have control characters.

Solution is simple: don’t trust any input,
and validate all assumptions.

Input from users should be treated as hostile.

widely used database query language

fetch data: SELECT * FROM table WHERE something="‘value’
add data: INSERT INTO table (col1, col2) VALUES (vall, val2)
modify, delete, etc.

syntax is standardized, independent of the database

Sselected_user = (get user input)
Ssql_query = “SELECT username, key FROM keys WHERE

username=‘Sselected user’”;
Sresult = Sdb->executeQuery(Ssql);

What if ‘user’ is a malicious string that changes the
meaning of the query?

A User Login - Microsoft Internet Explorer E]

File Edit View Favorites Tools Help

QBack ¥ Favorites ﬂ

Enter User Name: |smith

j My Computer

'u'l&sta'n.‘(;, Zo -[B2 [he Bn (P B Qﬁﬂ”‘ﬁ‘ﬂﬁ;g 3:09PM

Browser sends ‘user’,
web server creates SQL,
DB executes SQL

A User Login - Microsoft Internet Explorer g

File Edit View Favorites Tools Help
Favorites {64

er.html

Enter User Name: |, DROP TABLE U

[Login |

X ' Discussions ¥ _pl D 7]) & T QDiscussions not available for this document

€] Done

provided input is:
‘foo’; DROP TABLE USERS; ——’

executed query is
SELECT username, key FROM keys WHERE username=foo’; DROP TABLE USERS;

this deletes the table name USERS
0ops.

Authentication to DB

set user found = execute(“SELECT * FROM users WHERE username=‘'" &
form(“user”) & “ AND password="" & form(“pwd”) & “ ”);
if (size(user found) !=0)
return AUTHENTICATE SUCCESS

Authentication to DB

set user found = execute(“SELECT * FROM users WHERE username=‘'" &
form(“user”) & “ AND password="" & form(“pwd”) & “ ”);
if (size(user found) !=0)
return AUTHENTICATE SUCCESS

user provides username and password,
this query looks up the combination

Authentication to DB

set user found = execute(“SELECT * FROM users WHERE username=‘'" &
form(“user”) & “ AND password="" & form(“pwd”) & “ ”);
if (size(user found) !=0)
return AUTHENTICATE SUCCESS

user provides username and password,
this query looks up the combination

if there is one row in user found,
authentication is correct!

user gives username:’ OR 1=1 —-—
web server executes SELECT * FROM users WHERE username=" OR
1=1 —— blahblah

now everything matches (why?)
user is found (why?)
authentication successful (why?)

SELECT * WHERE user=‘name’ AND pwd="passwd’

user gives for both name and passwd:
’OR WHERE pwd LIKE ‘%

server runs.

SELECT * WHERE user=" OR WHERE pwd LIKE ‘%" AND pwd = “ OR WHERE pwd
LIKE ‘%’
the % is a wildcard, it matched anything

Result of this:

logs into the database with the
credentials of the

Result of this:

logs into the database with the
credentials of the

this is usually

Result of this:

logs into the database with the
credentials of the

this is usually

PRIVILEGE ESCALATION

Pull Data from other Database

username:’ AND 1 = 0 UNION SELECT cardholder,
number, exp_month, exp_year FROM creditcards

Pull Data from other Database

username:’ AND 1 = 0 UNION SELECT cardholder,
number, exp_month, exp_year FROM creditcards

results of both queries are combined and returned

Create User

username:’; INSERT INTO USERS (...) VALUES (...);

Create User
username:’; INSERT INTO USERS (...) VALUES (...);

WHERE email=victim@tru.ca

code as data can be stored now but executed later
inconsistency in checking

user sets username to: admin’ ——
suppose that DB builds the query correctly
the quote in the username does not terminate the query but the username is
set as above
i.e., it is properly escaped at the time

user then changes their password

perhaps not through a web frontend
UPDATE USERS SET passwd=‘evil’ WHERE uname=‘admin’ ——’

validate
filter out any character that has special meaning
apostrophes, semicolons, percents, hyphens, underscores
check the data type
all assumptions must be checked
use libraries designed to do this instead of doing it yourself

FULL MEDIATION

allow list permitted characters
block listing bad ones doesn’t work

set well-defined set of safe values
match with regular expressions

special characters like ’ blur code and data
but can occur in names: O’Brian

these must be in the input

functions to do this: escape(o’connor) — o\’connor
don’t do this ad hoc
don’t just replace ’ with \’ (why?)

SQL injection comes about because queries are created by string
concatenations
this elevates user-provided input to the importance level of backend

code written by trusted engineers
both strings are equal components to the resulting query
both strings can be data or code
user-provided input should be only , hot code

bind variables
placeholders guaranteed to be data
prepared statements
static scaffolds of SQL with bind variables to be filled in

String query = “SELECT * FROM table WHERE userid=?";
PreparedStatement ps = db.prepareStatement(query);
ps.setint(1, session.getCurrentUserld());

ResultSet = ps.executeQuery();

