Software Security Engineering

Winter 2023
Thompson Rivers University



motivation
harden a network against external attack

the more public facing network services you run the greater the risk
MINIMIZE ATTACK SURFACE

one approach: disable services you don’t need
you may be running some you don’t realize
sometimes you need to allow trusted remote users in
hard to scale
you have hundreds or thousands of systems and services
different OSs, hardware, etc.



reduce risk by blocking from accessing network
put a that monitors and controls all traffic to and from the
outside

single point that can “disable services” for thousands of hosts



effectiveness of firewall relies on the security policy
is allowed to talk to
services are allowed to be used
distinguish between inbound and outbound connections

: attempts by external users to connect to services on internal machines
: attempts by internal users to connect to services on external
machines



may suggest that inbound connections are riskier
internal users are authenticated
e.g., by logging into a computer
e.g., by having physical access
external users can be anyone on the internet

example security policy
internal users can connect to any service
external users are restricted
connections to www service on port 80 and 443
connections to printer service port 631



policy may specify permit and deny for different machines
but how to treat traffic not mentioned in policy?

permit external access to services
shut off access as problems are seen

deny everything except specific things needed
e.g., ssh, web, etc.

add more when users complain

audit and approve changes



which does design principles recommend?

which notices flaws faster and with less risk?

balance and consequence of false positives and false negatives
always relevant for imperfect binary decision making



most basic kind of firewall is a

a router with a list of

checks each received packet against the rules to decide what to do
forward to correct host
drop the packet entirely

each rule specifies which packets it applies to based on packet’s header
is stateless, only considers the packet as is
use source / dest IP, ports, protocol names to judge
use * as a wildcard to match everything



allow tcp 1.2.3.4:1025 -> 10.0.0.1:80
firewall permits any TCP packet if
itisfrom 1.2.3.4
itisto 10.0.0.1
it is from port 1025
itis to port 80

allow tcp 1.2.3.4:* -> 10.0.0.1:80

same as above but any source port okay



rules can be ordered

first rule that applies decides

example: second rule inconsequential
deny tcp 1.2.3.4:* -> 10.0.0.1:*
allow tcp 1.2.3.4:* ->10.0.0.1:80
example: allows port 80, disallows all other ports

allow tcp 1.2.3.4:* ->10.0.0.1:80
deny tcp 1.2.3.4:* -> 10.0.0.1:*



How would you implement the default-deny rule?
How would you implement the default-allow rule?
What would it look like and where would you put it

(relative to other rules)?



firewalls can have thousands of filtering rules

easy to introduce subtle errors
these need to be tested with unit tests like a program

provides not only inbound security but outbound policy enforcement
e.g., disallows bittorrent on the network

firewalls permit connections to be opened
internal:43256 -> external.com:443 thereafter allows reverse traffic



central control
easy administration and update
single point of control
one config file to change
rapid response after changing

easy to deploy

transparent to end users

simply add a device on the network that sits in front of the Internet
addresses problem

security vulnerabilities in network services are rampant

easier to disable access to them than to secure them
easier to disable access if a new vulnerability appears



functionality loss

some network stuff may not work
some apps don’t work with both endpoints behind firewalls

threat

firewalls assume that insiders are trusted
inbound versus outbound
this may not be the case
firewalls create a
threats can come from laptops and cell phones that are compromised



packet filters have a
they look at headers
network and transport layer
they don’t look at packets
application layer

suppose an internal user wanted to get around firewall

e.g., access forbidden content or use forbidden services
how may they do that?



port 53/udp is for DNS

typically this has to be allowed for the Internet to work
but why can’t it be BitTorrent traffic instead?

provided client and server agree

port numbers are just a convention, not a rule

how to get remote service to agree?

you could ask them to run it on a different port
you can run your own service and have it forward
“IP-over-DNS”



user runs a

a program listening on a port that is not blocked
e.g., HTTP
this program is running on a different network that is not behind a firewall

user sends innocuous-looking traffic to their relay

the traffic says “send the rest of the packet to IP:port”
relay relays the traffic to the intended destination
relay sends the reply back to the user

how can this be detected?



