
Software Security Engineering

Winter 2023
Thompson Rivers University

Certificates
Lecture 06

Public Key Problems

● public-key crypto lets us secure communication
○ confidentiality, integrity, authenticity, non-repudiation

● but it requires that the public keys are authentic
○ you still need an authentic channel for that

● this is a hard practical problem
○ you’ve never met Google before logging into G-Mail, you just somehow got its

key

Alice and Bob

● Alice and Bob both have their own public and private keys

● Alice and Bob have never met

● Alice needs Bob’s public key to encrypt
○ she asks Bob over an insecure channel

○ she gets a public Key

○ what can go wrong?

Alice needs a way to validate the key without

any bits being exchanged over an authentic channel.

You cannot bootstrap trust. It has to start somewhere.

You cannot bootstrap trust. It has to start somewhere.

With a kernel of trust you can exchange the key.

You cannot bootstrap trust. It has to start somewhere.

With a kernel of trust you can exchange the key.

With the key you can exchange everything else.

Solution 1: trust on first use (TOFU)

Solution 1: trust on first use (TOFU)

This is actually used a lot and is called TOFU.

I get something that claims to be Bob’s public key.

I get something that claims to be Bob’s public key.

I assume it is and only trust that one

I get something that claims to be Bob’s public key.

I assume it is and only trust that one

I am suspicious if it ever changes

I get something that claims to be Bob’s public key.

I assume it is and only trust that one

I am suspicious if it ever changes

I am safe unless I was being attacked at that first time.

I get something that claims to be Bob’s public key.

I assume it is and only trust that one

I am suspicious if it ever changes

I am safe unless I was being attacked at that first time.

I can always validate Bob’s public key later if I meet Bob.

Solution 2: centralized on-demand service

Solution 2: centralized on-demand service

Alice ask Service for Bob’s key (or to validate it)

Solution 2: centralized on-demand service

Alice ask Service for Bob’s key (or to validate it)

would this be practical?

Solution 2: centralized on-demand service

Alice ask Service for Bob’s key (or to validate it)

would this be practical?

MITM attacks?

Solution 2: centralized on-demand service

Alice ask Service for Bob’s key (or to validate it)

would this be practical?

MITM attacks?

Replay attacks?

Solution 2: centralized on-demand service

Alice ask Service for Bob’s key (or to validate it)

would this be practical?

MITM attacks?

Replay attacks?

DoS attacks?

Solution 2: centralized on-demand service

Alice ask Service for Bob’s key (or to validate it)

would this be practical?

MITM attacks?

Replay attacks?

DoS attacks?

Corrupt service?

Solution 2: centralized on-demand service

Alice ask Service for Bob’s key (or to validate it)

would this be practical?

MITM attacks?

Replay attacks?

DoS attacks?

Corrupt service?

Does this remind you of anything?

Solution 2: centralized on-demand service

Alice ask Service for Bob’s key (or to validate it)

would this be practical?

MITM attacks?

Replay attacks?

DoS attacks?

Corrupt service?

Does this remind you of anything? Trusted Third Party (TTP)?

Certificates

● a statement about a public key
○ “this certifies that KEY XYZ belongs to Bob. Yours most sincerely,

Trent”

● Bob sends his public key to Trent over an authentic channel

● Trent prepares a document stating Bob owns the key

● Trent signs the document with Trent’s private key

● Trent appends this signature to the document and gives the result to

Bob

Bob can show this to anyone without involving Trent!

Bob can show this to anyone without involving Trent!

Alice can verify this without asking Trent,

she only needs his public key!

Bob can show this to anyone without involving Trent!

Alice can verify this without asking Trent,

she only needs his public key!

Does this remind you of anything?

Bob can show this to anyone without involving Trent!

Alice can verify this without asking Trent,

she only needs his public key!

Does this remind you of anything? Ticket?

Protocol

● Alice has Trent’s public key (assume for now)

● Alice contacts Bob

● Bob gives Alice the certificate signed by Trent

● Alice checks that the signature is valid using Trent’s public key

● If Trent is honest, then that is Bob’s public key

In practice, the document is called a digital certificate

or a cert for short

In practice, the document is called a digital certificate

or a cert for short

Trent is called a certificate authority

or a CA for short

what can go wrong?

what can go wrong?

Alice doesn’t have authentic key for Trent

(either bad in the first place, or changed)

Alice is not able to validate the cert

what can go wrong?

Alice doesn’t have authentic key for Trent

(either bad in the first place, or changed)

Eve pretended to be Bob and Trent gives her a “Bob” cert

(this is not a hypothetical risk, it has happened several times)

what can go wrong?

Alice doesn’t have authentic key for Trent

(either bad in the first place, or changed)

Eve pretended to be Bob and Trent gives her a “Bob” cert

(it’s one thing for everyone to know Trent,

another for Trent to know everyone)

What can go wrong?

What if Trent is Eve?

What can go wrong?

What if Trent is Eve?

What if Eve breaks into Trent’s computers?

How do you know if the whole certificate system works?

That’s the user’s entire interaction with the security.

That’s the user’s entire interaction with the security.

It’s called a security indicator (LEAST SURPRISE)

That’s the user’s entire interaction with the security.

It means encryption is securing the connection

and the website provided a valid certificate.

That’s the user’s entire interaction with the security.

It means encryption is securing the connection

and the website provided a valid certificate.

What does that mean though?

That’s the user’s entire interaction with the security.

It means encryption is securing the connection

and the website provided a valid certificate.

What does that mean though?

Did Trent meet Bob face to face?

But even with the lock, what does it mean?

It means encryption is securing the connection

and the website provided a valid certificate.

What does that mean though?

Did Trent meet Bob face to face?

Who is Trent?

CA’s Duties

● Bob claims that bob.com is his

● Bob wants to use PK as a public key for it

● What checks are required before issuing cert by CA?
○ Bob needs to prove he controls the PK and have private key

○ Bob need to prove he control the bob.com

○ (this is the basic level of certification. More later in this lecture)

● Bob sends Alice: “Bob-signed(Trent-signed(cert))”
○ cert claims “bob.com’s signing key is PK”

● What checks are required before trusting cert?
○ check Bob’s signature is valid using PK from the cert

○ trust the Trent’s signature is valid

○ bob.com is where she wants to go and this is not a cert for something else

Alice’s Duties

Failing to check that cert is actually for Bob!

Failing to check that cert is actually for Bob!

Researchers discovered that poorly

designed APIs used in SSL implementations

failed to check the cert matched the sender.

Many critical non-browser software packages

such as Amazon’s EC2 Java library, Amazon’s

and PayPal’s merchant SDKs, Trillian and AIM

instant messaging software, popular integrated

shopping cart software packages, Chase mobile

banking software, and several Android applications

and libraries.

SSL connections from these programs and many

others are vulnerable to a man in the middle attack

Failing to check the cert!

Secure Coding - Use {} by default

Let’s say that Bob’s private key is stolen.

Let’s say that Bob’s private key is stolen.

What’s the worst that can happen?

Let’s say that Bob’s private key is stolen.

What’s the worst that can happen?

Eve is able to imposter Bob forever

A fake certificate can trick a system into thinking it is communicating with

a trusted entity when it is actually communicating with an untrusted

entity.

 This can lead to the release of sensitive information, such as passwords

or other confidential data, to the attacker.

It can also lead to the installation of malicious software on the system.

A fake certificate undermines the trust that is essential for secure

communication and should be avoided at all costs.

Let’s say that Bob’s private key is stolen.

What’s the worst that can happen?

Eve is able to imposter Bob forever

How can we stop this?

Certification Revocation

● revoke means no longer trust this cert
○ keys can get stolen, or suspected stolen

○ also Bob changes companies

○ Bob wants to use a new key instead

● certs are just a signed statement

● how to remove trust once issued?

Cert Revocation List

● CRL are lists of bad certs.

● periodically given out to parties, e.g., weekly

● can be pushed to parties or posted to specific place

Certs Expire

● gives upper bound on use of stolen key

● keeps cert authorities with customers
○ Certification Authorities charge a fee for their certificates

○ the cost varies based on the services

● stops revocation lists from growing forever

CRL Deltas

● instead of publishing the whole CRL, give updates (deltas)

● requires active involvement to keep up to date

Online Status Checking

● use an always online party check if a cert is valid
○ check done by Alice at the time of use

○ online certificate status protocol (OCSP)

● what does this cost?
○ Tom (new Certificate checking system) is involving

○ Tom could be your ISP

OCSP-stapling

● periodically get a signature from the online party with a timestamp
○ cert X is still not revoked at time Y

● check now done by Bob
○ CA load substantially reduced for popular sites

● does this remind you of another protocol?

What does OCSP provide that CRLs don’t?

Short-lived Certs

● make all certs only valid for a week

● exposure time is bounded to this low amount

● need to contact the CA to get new certs

Short-lived certs seem equivalent to CRL and

OCSP-stapling but they differ in a failure condition.

How?

Short-lived certs seem equivalent to CRL and

OCSP-stapling but they differ in a failure condition.

How?

CRL and OCSP requires a trusted third party but

short-lived certs avoid this

Certs in Practice

● certs are used for TLS
○ transport layer security

○ this is the de facto means to secure web traffic

○ puts the S in HTTPS

■ S is for secure

○ topic of next lecture

● certs deliver a website’s public key to a browser
○ authentic delivery of public key for Bob

○ creates authentic channel from Alice to Bob

Alice goes to bob.com and gets a cert

for a public key that the owner of

bob.com has the private key for.

For web, this is all done in the browser.

For web, this is all done in the browser.

The browser is responsible for checking if a cert is valid

by checking the fields, CRLs, etc.

Since 2016, more web traffic is over HTTPS than HTTP

Since 2016, more web traffic is over HTTPS than HTTP

the lock has become more normal, and browsers are now

warning on insecure pages

Three types of validation for certs.

Domain Validated (DV)

● Bob gives a public key to the CA and claims bob.com

● sends an email to admin@bob.com
○ a challenge, e.g., random number to sign with key

● purported owner proves control over the domain by
○ posting DNS TXT records to bob.com

○ putting some random number on bob.com/ca challenge.html

● no proof that there’s anyone named Bob related to it
○ could be a rogue employee with webmaster access

● can be fully automated

Organization Validated (OV)

● also checks a business/organization behind the key

● e.g., look up business in a public directory and call them

● exact practice depends on the CA’s certificate practice statement

● this extra information then is part of cert
○ but the user still only sees the lock icon

Extended Validation (EV)

● use of government database to confirm existence of legal entities

named as Subject

● EV cert issuers are audited, have governance
○ certificate requests must be approved by a human lawyer

● motivated by low confidence DV certs that can be given to phishing

websites
○ resulted in same visual experience as a legit site

■ e.g., lock icon, secure browser bar, etc.

Extended Validation

● this has since stop
○ May 2018, Google removed it from Chrome

○ other browsers soon followed

● this seemed like a good idea, so why did it stop?

Extended Validation Drop Reason

● user studies and A/B testing which showed they were ineffective
○ users do not appear to make secure choices (such as not entering password or

credit card information) when the UI is altered or removed

● interfered with the bias towards neutralization of HTTPS
○ secure should be the norm, and insecure is increasing being treated as hostile

● could be hacked with similar business names

Back in 2008

● Sotirov et al. collected 30,000 website certificates
○ 9,000 of them were signed using MD5 hash

○ we generally sign hashes of messages, not messages

○ 97% of those were issued by RapidSSL

○ others were FreeSSL, TrustCenter, RSA Data Security, Thawte, verisign.co.jp

● what is wrong with signing an MD5 hash?

MD5 has known collisions, since 2004.

MD5 has known collisions, since 2004.

A signature on one message means that all other messages

with the same hash will appear to also be signed.

MD5 has known collisions, since 2004.

A signature on one message means that all other messages

with the same hash will appear to also be signed.

Having a collision can suggest a technique to make more.

MD5 has known collisions, since 2004.

A signature on one message means that all other messages

with the same hash will appear to also be signed.

Having a collision can suggest a technique to make more.

Collisions are typically not found by brute force alone.

Finding Collisions takes about 1–2 days

on a cluster of 200 PS3s

How do we trust Certificate Authorities?

Any certificate signed by any of these certs is accepted as

completely valid

Any certificate signed by any of these certs is accepted as

completely valid

i.e., gets the lock icon and no warnings.

Any certificate signed by any of these certs is accepted as

completely valid

i.e., gets the lock icon and no warnings.

There’s no scale or proportion of trust for these CAs.

Any certificate signed by any of these certs is accepted as

completely valid

i.e., gets the lock icon and no warnings.

There’s no scale or proportion of trust for these CAs.

What can go wrong?

Source: “Certified Lies: Detecting and
Defeating Government Interception
Attacks Against SSL” by Christopher
Soghoian and Sid Stamm

The attacker who penetrated the Dutch CA DigiNotar last

year had complete control of all eight of the company’s

certificate-issuing servers during the operation and he may

also have issued some rogue certificates that have not yet

been identified. The final report from a security company

commissioned to investigate the DigiNotar attack shows

that the compromise of the now-bankrupt certificate

authority was much deeper than previously thought.

Neglect by Certificate Authorities can have a significant impact on

human lives!

Wait!

IT GETS BETTER!

That enormous list of CAs are known as root CAs.

That enormous list of CAs are known as root CAs.

CAs sign certificates for other CAs.

That enormous list of CAs are known as root CAs.

CAs sign certificates for other CAs.

So Turktrust signs for someone you never heard of

That enormous list of CAs are known as root CAs.

CAs sign certificates for other CAs.

So Turktrust signs for someone you never heard of

who signs for someone else

That enormous list of CAs are known as root CAs.

CAs sign certificates for other CAs.

So Turktrust signs for someone you never heard of

who signs for someone else

who signs for someone else

That enormous list of CAs are known as root CAs.

CAs sign certificates for other CAs.

So Turktrust signs for someone you never heard of

who signs for someone else

who signs for someone else

who signs that some random public key you’ve never seen

before is Bob’s.

That enormous list of CAs are known as root CAs.

CAs sign certificates for other CAs.

So Turktrust signs for someone you never heard of

who signs for someone else

who signs for someone else

who signs that some random public key you’ve never seen

before is Bob’s.

And it gets the lock icon.

 > openssl s_client -showcerts -connect tru.ca:443

Demo

TURKTRUST, a certificate authority in Mozilla’s root

program, mis-issued two intermediate certificates to

customers. TURKTRUST has scanned their certificate

database and log files and confirmed that the mistake

was made for only two certificates.

TURKTRUST, a certificate authority in Mozilla’s root

program, mis-issued two intermediate certificates to

customers. TURKTRUST has scanned their certificate

database and log files and confirmed that the mistake

was made for only two certificates.

Mozilla is actively revoking trust for the two

mis-issued certificates which will be released to all

supported versions of Firefox in the next update.

TURKTRUST accidentally issued intermediary CA certs.

TURKTRUST accidentally issued intermediary CA certs.

Those are the ones in the middle, and are

just as good as the root.

TURKTRUST accidentally issued intermediary CA certs.

Those are the ones in the middle, and are

just as good as the root.

Just because a country doesn’t have a root cert,

doesn’t mean they don’t have an intermediate one.

TURKTRUST accidentally issued intermediary CA certs.

Those are the ones in the middle, and are

just as good as the root.

Just because a country doesn’t have a root cert,

doesn’t mean they don’t have an intermediate one.

There’s thousands of intermediaries from

non-democracies and private companies

(including defense contractors)

Also, the MD5 collision issue can be used to create

intermediary CA certs!

This means that it is a master key!

This means that it is a master key!

A network attacker to easily forge fake

certificates for any website!

This means that it is a master key!

A network attacker to easily forge fake

certificates for any website!

Users will get wrong public key and

not have any indication something is wrong.

if an attacker become a CA,

it can break everyone access to the Internet

it can MITM attack everyone

if an attacker become a CA,

it can break everyone access to the Internet

it can MITM attack everyone

All it takes is someone accidentally make you a CA,

or use MD5 collision vulnerability

Browsers trust too many CA.

The security of HTTPS is only as

strong as the practices of the

least trustworthy/competent CA.

WEAKEST LINK

Fake certs is probably the most practical

way to break Internet security but...

Fake certs is probably the most practical

way to break Internet security but…

it is clear if the attack gets done.

Fake certs is probably the most practical

way to break Internet security but…

it is clear if the attack gets done.

Public key signatures provided non-repudiability

so if I sign a bad cert I can’t undo it.

Fake certs is probably the most practical

way to break Internet security but…

it is clear if the attack gets done.

Public key signatures provided non-repudiability

so if I sign a bad cert I can’t undo it.

If I’m the kind of CA that gives out bad

certs then I’ll stop being in the CA club.

Certificate Transparency (CT)

After Diginotar, Google employees wanted

to create an open source framework for

detecting mis-issued certificates.

After Diginotar, Google employees wanted

to create an open source framework for

detecting mis-issued certificates.

idea: log all new certificates from a CA

System was voluntary at first.

System was voluntary at first.

In 2015, Chrome required CT

logging for all new EV certs

System was voluntary at first.

In 2015, Chrome required CT

logging for all new EV certs

i.e., would reject cert if

it did not appear in logs.

System was voluntary at first.

In 2015, Chrome required CT

logging for all new EV certs

i.e., would reject cert if

it did not appear in logs.

In 2016, required CT for all

certs from Symantec (Norton) (Link)

https://www.uncommonlogic.com/insights/googles-distrust-symantec-certificates-your-companys-site/

System was voluntary at first.

In 2015, Chrome required CT

logging for all new EV certs

i.e., would reject cert if

it did not appear in logs.

In 2016, required CT for all

certs from Symantec (Norton)

(they had issued 187 certificates

without the domain owner’s knowledge)

System was voluntary at first.

In 2015, Chrome required CT
logging for all new EV certs

i.e., would reject cert if
it did not appear in logs.

In 2016, required CT for all
certs from Symantec (Norton)

(they had issued 187 certificates
without the domain owner’s knowledge)

In 2018, all certs.

View the logs: https://crt.sh/

How do we get certs?

● pay for one of the trusted authorities to give you one.

● use a self-signed cert
○ “Bob’s public key is XXX signed by XXX”

○ only for backwards compatibility

○ you sign your key with your own key

○ still not an authentic channel but what does it stop?

What is the trust model being used for circumvention?

This alarm bell design is good, but it incentives

not using security because not using security

generally had no alarm bells! (Think about threat model.)

It should be as hard or worse to use insecure sites.

It should be as hard or worse to use insecure sites.

Best case of a self-signed cert: it’s the real cert.

It should be as hard or worse to use insecure sites.

Best case of a self-signed cert: it’s the real cert.

Worst case of a self-signed cert: not using security.

It should be as hard or worse to use insecure sites.

Best case of a self-signed cert: it’s the real cert.

Worst case of a self-signed cert: not using security.

Fake cert means you are being actively man-in-the-middled.

It should be as hard or worse to use insecure sites.

Best case of a self-signed cert: it’s the real cert.

Worst case of a self-signed cert: not using security.

Fake cert means you are being actively man-in-the-middled.

No cert means any passive attacker can read your traffic.

It should be as hard or worse to use insecure sites.

Best case of a self-signed cert: it’s the real cert.

Worst case of a self-signed cert: not using security.

Fake cert means you are being actively man-in-the-middled.

No cert means any passive attacker can read your traffic.

as well as actively modify!

Let’s Encrypt

● free automated open cert signing
○ only does DV, not OV or EV

○ supported by donations and volunteers

● allows anyone with just a webpage to have a nice signed cert
○ browsers trust the letsencrypt cert

○ avoids the warning alarms for self signed certs

○ avoids not using encryption

Let’s Encrypt

● started in 2014 by EFF and backed by Akamai, Google, Facebook,

Mozilla, and more

● has now signed 2.1 B certs for 265 million unique domains (2021)
○ largest certificate issuer in the world

● 83% of all firefox traffic in 2021 is HTTPS (secured)
○ it was 67% in 2017

○ it was 25% in 2013

● it used to be hard and expensive to get a cert

