
Software Security Engineering

Winter 2023
Thompson Rivers University

Kerberos and Mediated Key Exchange
Lecture 05





Kerberos, the three headed dogs that guard hades, 

as protocol to key exchange. 

Establishing a session key between two entities. 



Kerberos is an old idea in computer science, 

and is in significant use today.

A TIME-TESTED TOOL



Imagine we have printers and some employees.

It’s not reasonable to give everyone a single username for each printer 

and expect to type password for every use.



Imagine we have printers and some employees.

It’s not reasonable to give everyone a single username for each printer 

and expect to type password for every use.

Kerberos abstract away authentication from delivery of the service.



The core idea is

Key Distribution Center (KDC)



● a central trusted party

● knows all the nodes in the network

● has authentic channel with all the nodes

● allows for mediated key exchange

Key Distribution Center (KDC)



what can go wrong?



what can go wrong?

Availability

(Single point of failure)



● Alice → KDC: “I want to talk to Bob”

● KDC invents a random key K
AB

● KDC → Alice: {use K
AB

 for Bob}
KA

● KDC → Bob: {use K
AB

 for Alice}
KB

● what can go wrong? (rather than KDC’s availability)

KDC Operation (in principle)

{Message}
key

 means the content of the message is protected with the key



● Alice → KDC: “I want to talk to Bob”

● KDC invents a random key K
AB

● KDC → Alice: {use K
AB

 for Bob}
KA

● KDC → Bob: {use K
AB

 for Alice}
KB

● what can go wrong? (rather than KDC’s availability)
○ Bob should be online

KDC Operation (in principle)

KA = Alice’s Key Only KDC and the particular user know the key
KB = Bob’s Key



KDC Operation (in practice)

● Alice → KDC: “I want to talk to Bob”

● KDC invents a random key K
AB

● KDC → Alice: 
○ {use K

AB
 for Bob}

KA

○ {use K
AB

 for Alice}
KB

○ this is called a ticket

● Alice → Bob: “Hi I’m Alice! ticket = {use K
AB

 for Alice}
KB



KDC Operation (in practice)

● Alice → KDC: “I want to talk to Bob”

● KDC invents a random key K
AB

● KDC → Alice: 
○ {use K

AB
 for Bob}

KA

○ {use K
AB

 for Alice}
KB

○ this is called a ticket

● Alice → Bob: “Hi I’m Alice! ticket = {use K
AB

 for Alice}
KB

● what can go wrong?



This ticket does not have any notion of time.

Alice can uses the ticket years later.



● goal is key transport on insecure networks (like the Internet)
○ e.g., you print a document at TRU

● use of a trusted third party to mediate keys for people
○ you don’t need to do key exchange with everyone before communicating

● two types
○ symmetric key

○ goal: establish a session key between Alice and Bob
○ public key

○ goal: provide mutual authentication between Alice and Bob

● both protocols insecure as proposed!
○ because crypto is hard

Needham-Schroeder Protocol



● Notation:
○ (A)lice, (B)ob, (S)erver (trusted by both A and B)
○ K

xy
 symmetric key known only by X and Y

○ N
x
 a random nonce generated by X

○ {data}
Kxy

 data is encrypted with K
xy

● Protocol:
○ A → S : A, B, N

A 

○ S → A : {N
A
, K

AB
, B, {K

AB
, A}

KBS
}

KAS

○ A → b : {K
AB

, A}
KBS

○ B → A : {N
B
}

KAB

○ A → B : {N
B
 - 1}

KAB

● where is the flaw?

N-S Symmetric



● Protocol:
○ A → S : A, B, N

A 

○ S → A : {N
A
, K

AB
, B, {K

AB
, A}

KBS
}

KAS

○ A → b : {K
AB

, A}
KBS

○ B → A : {N
B
}

KAB

○ A → B : {N
B
 - 1}

KAB

● where is the flaw?
○ replay attack. if Eve learns one single key only once (by compromising the 

system), Eve can start with line 3
○ Thus is secure under assumption that Eve never learn the key. But is vulnerable 

in a way that if Eve only learn the key once, the protocol is broken forever.

N-S Symmetric



● amend the first two line to:
○ A → B : A

○ B → A : {A, N’
B
 }

KBS

○ A → S : {A, B, N
A
, {A, N’

B
}

KBS
}

KAS

○ S → A : {N
A
, K

AB
, B, {K

AB
, A, N’

B
}

KBS
}

KAS

● why does this fix the flaw? 

One fix



N-S Public Key

● Notation:
○ A, B, S the same
○ K

PX
 - public key for X (= A, B, or S)

○ K
X
- private key for X (paired with K

PX
)

○ {message}
PX

 - encrypted for X
○ {message}

X
 - signed by X

● Protocol:
○ A → S : A, B
○ S → A : {K

PB
, B}

KS
○ A →B : {N

A
, A}

KPB
○ B → S : B, A
○ S → B : {K

PA
, A}

KS
○ B → A : {N

A
, N

B
}

KPA
○ A → B : {N

B
}

KPB

● where is the flaw?



● A → S : A, E

● S → A : {K
PE

, E}
KS

● A → E : {N
A
, A}

KPE

● E → B : {N
A
, A}

KPB
○ E can decrypt this ans so know N

A

● B → E : {N
A
, N

B
}

KPA
○ E cannot decrypt this so does not learn N

B

● E → A : {N
A
, N

B
}

KPA
○ E can just reply it verbatim

● A → E : {N
B
}

KPE
○ E learns N

B
 by design

● E → E : {N
B
}

KPB
○ success

N-S Mafia Fraud



Lowe fixed this flaw



N-S-Lowe

● Notation:
○ A, B, S the same
○ K

PX
 - public key for X (= A, B, or S)

○ K
X
- private key for X (paired with K

PX
)

○ {message}
PX

 - encrypted for X
○ {message}

X
 - signed by X

● Protocol:
○ A → S : A, B
○ S → A : {K

PB
, B}

KS
○ A →B : {N

A
, A}

KPB
○ B → S : B, A
○ S → B : {K

PA
, A}

KS
○ B → A : {N

A
, N

B
, B}

KPA
○ A → B : {N

B
}

KPB



Now for Kerberos, based on symmetric N-S



● how to prove identity when requesting services on Network (e.g., the 

Internet)
○ many users, many services (mail, printer, servers, etc.)

○ “single sign-on” (SSO)

● naive solution: every server knows every user password
○ insecure: break into one server, compromise all users

○ inefficient: to change password, user must contact all servers

Many-to-Many Authentication



Enter Kerberos



● security
○ against attacks by passive eavesdroppers

○ against attacks by actively malicious users

● transparency
○ users shouldn’t notice authentications taking place

○ password entering fine, as long as not all the time

● scalability
○ lots of users, lots of servers

Requirements



● user impersonation
○ malicious user with access to a workstation pretended to be another user from 

same workstation

● network address impersonation
○ malicious user changes network address of their workstation to impersonate 

another workstation

● eavesdropping, tampering, replay
○ malicious user eavesdrops, tampers, or replay other users’ conversations

to gain unauthorized access

Threats



● user proves identity to trusted third party (TTP), requests a ticket for 

service

● TTP knows all users and services, can grant access

● user gets a ticket

● ticket is used to access service

● TTP is authentication service on the network
○ convenient (but also single point of failure!)

○ requires high level of physical security

Solution: Trusted Third Party (TTP)



● ticket gives holder access to a network service

● ticket proves that a user has authenticated

● user should not be able to create a ticket

● user should not be able to delegate tickets

Ticket Requirements



Ticket Logistics

● authentication service encrypts some information with a key known 

to the server
○ e.g., the printer can decrypt it, but not the user

● the user simply forwards the ticket to the printer, but cannot

● create one or read it

● server decrypts the ticket and verifies the information



Ticket Contents

● ticket must include everything to prevent abuse
○ user using tickets to other servers

○ user using tickets after they lose access

○ e.g., they’ve been fired

○ user giving tickets to other users to use

● ticket includes:
○ user name

○ server name

○ address of user’s workstation

○ ticket lifetime



Naive Authentication

● protocol:
○ user sends password to authentication server

○ server provides an encrypted ticket

● problems:
○ insecure: eavesdropper sees the password and can impersonate

○ inconvenient: need to send the password each time to get the ticket

○ separate authentication for email, printing, etc.



● protocol:
○ user authenticates to the key distribution centre (KDC)

○ gets a special ticket granting service (TGS) ticket

○ user gives TGS ticket to TGS server when needed

○ gets encrypted service ticket (e.g., for printer)

○ user gives ticket to printer

Two-Step Authentication



Threats to Two Step

● ticket hijacking
○ malicious user steals service ticket

○ uses it on the same workstation

○ network address verification doesn’t help

○ server must verify that the user who gives the ticket is the same who was issued

● no server authentication
○ attacker may misconfigure the network so they receive messages sent to server

○ deny service or capture private information



Kerberos

● K
C
 is a long-term key of client C

○ derived from the user’s password

● K
TGS

 is a long-term key of the TGS
○ known by KDC and TGS

● K
V 

is a long-term key of network service V
○ known to V and TGS; each V has its own key

● K
C ,TGS

 is a short-term session key b/w C and TGS
○ created by KDC, known to C and TGS

● K
C ,V

 is a short-term session key b/w C and V
○ created by TGS, known to C and TGS

































































Kerberos in Large Networks

● one KDC isn’t enough

● network is divided into realms
○ KDCs in different realms have different key databases

● to access a service in another realm, users must:
○ get a ticket for home-realm TGS from home-realm KDC

○ get a ticket for remote-realm TGS from home-realm TGS

○ i.e., were the remote-realm TGS just a normal home-realm network service

○ get ticket for remote service from that realm’s TGS

○ use remote-realm ticket to access service



Important Ideas in Kerberos

● short-term session keys
○ long-term secrets used only to secure delivery of short-term keys

○ separate session key for each user-server pair

○ re-used by multiple sessions between same user/server

● symmetric crypto only
○ fast, no expensive operations

● trusted third party
○ new users only need to register a password



Important Ideas in Kerberos

● proof of identity based on authenticators
○ client encrypts his identity, addr, time with session key

○ knowledge of key proves client has authenticated to KDC

○ also prevents replays if clocks are globally synchronized

○ server learns this key separately

○ via encrypted ticket that client can’t decrypt

○ verifies client’s authenticator


