Kerberos and Mediated Key Exchange
Lecture 05

Software Security Engineering

Winter 2023
Thompson Rivers University

Kerberos, the three headed dogs that guard hades,

as protocol to key exchange.
Establishing a session key between two entities.

Kerberos is an old idea in computer science,
and is in significant use today.

A TIME-TESTED TOOL

Imagine we have printers and some employees.
It’s not reasonable to give everyone a single username for each printer
and expect to type password for every use.

Imagine we have printers and some employees.
It’s not reasonable to give everyone a single username for each printer
and expect to type password for every use.

Kerberos abstract away authentication from delivery of the service.

The core idea is
(KDC)

a central trusted party

knows all the nodes in the network

has authentic channel with all the nodes
allows for mediated key exchange

what can go wrong?

what can go wrong?
Availability

(Single point of failure)

Alice — KDC: “I want to talk to Bob”
KDC invents a random key K, |

KDC — Alice: {use K\e for Bob}KA
KDC — Bob: {use K,g for AIice}KB

what can go wrong? (rather than KDC’s availability)

{Message}key means the content of the message is protected with the key

Alice — KDC: “I want to talk to Bob”
KDC invents a random key K, .

KDC — Alice: {use K for Bob} ,
KDC — Bob: {use K,g for AIice}I<B

what can go wrong? (rather than KDC’s availability)
Bob should be online

KA = Alice’s Key Only KDC and the particular user know the key
KB = Bob’s Key

Alice — KDC: “l want to talk to Bob”
KDC invents a random key K, .
KDC — Alice:

{use Kya for Bob}KA
{use K, for Alice}
this is called a

Alice — Bob: “Hi I'm Alice! ticket = {use K for Alice}

Alice — KDC: “l want to talk to Bob”
KDC invents a random key K, .
KDC — Alice:

{use Kye for Bob}KA
{use K, for Alice}
this is called a

Alice — Bob: “Hi I'm Alice! ticket = {use K for Alice}
what can go wrong?

This ticket does not have any notion of time.

Alice can uses the ticket years later.

goal is key transport on insecure networks (like the Internet)
e.g., you print a document at TRU
use of a trusted third party to mediate keys for people
you don’t need to do key exchange with everyone before communicating
two types
symmetric key

goal: establish a session key between Alice and Bob
public key

goal: provide mutual authentication between Alice and Bob
both protocols insecure as proposed!
because crypto is hard

Notation:

(A)lice, (B)ob, (S)erver (trusted by both A and B)
ny symmetric key known only by X and Y

N arandom nonce generated by X

{data}KXy data is encrypted with ny

Protocol:
A—S:A BN,

S—A:{N
A—>b:{KAB,
B— A:{Nghus
A—>B:{NB-1}

B, {K

A KAB’ AB’ A}KBS}KAS

A}KBS

KAB

where is the flaw?

Protocol:
A—S:A BN,

S—A:{N, K
A—b:{K

B, {K

AB’ AB’ A}KBS}KAS

ap A

B— A:{N_}

KBS

KAB

A—B:{N -1}

where is the flaw?

replay attack. if Eve learns one single key only once (by compromising the
system), Eve can start with line 3

Thus is secure under assumption that Eve never learn the key. But is vulnerable
in a way that if Eve only learn the key once, the protocol is broken forever.

amend the first two line to:
A—B:A
B—A:{A N}
A—S:{A B, NA’ {A, N’B}KBS}KAS
S—A:{N, K, B {K,_A N}
why does this fix the flaw?

KBS}KAS

Notation:
A, B, S the same
K., - public key for X (= A, B, or S)
K,- private key for X (paired with K
{message},, - encrypted for X
{message}, - signed by X
Protocol:
A—S:AB
S—A:{K,, B}
A—B:{N,, A}
B—S:B A
S — B :{K,, Al
B—A: {NA’ NB}KPA
A—B: {NB}KPB
where is the flaw?

ox)

KPB

A—S:AE
S—A:{K,, E}
A—E:{N, A}
E—B:{N, A}

E can decrypt this ans so know N,
B—E: {NA’ NB}KPA

E cannot decrypt this so does not learn N,
E—A: {NA’ NB}KPA

E can just reply it verbatim
A—E: {NB}KPE

E learns N, by design
E—E:{N_}

Success

KPE

KPB

Lowe fixed this flaw

Notation:
A, B, S the same
K., - public key for X (= A, B, or S)
K,- private key for X (paired with K,)
{message}, - encrypted for X
{message}, - signed by X

Protocol:
A—S:AB
S—A:{K,, B}
A—B:{N,, A}
B—S:B, A
S—B: {KPA, A}KS
B—A:{N,N, B}

A= BNyl

KPB

KPA

Now for Kerberos, based on symmetric N-S

how to prove identity when requesting services on Network (e.g., the
Internet)

many users, many services (mail, printer, servers, etc.)
“single sign-on” (SSO)
naive solution: every server knows every user password

insecure: break into one server, compromise all users
inefficient: to change password, user must contact all servers

Enter Kerberos

security

against attacks by passive eavesdroppers

against attacks by actively malicious users
transparency

users shouldn’t notice authentications taking place

password entering fine, as long as not all the time
scalability

lots of users, lots of servers

user impersonation
malicious user with access to a workstation pretended to be another user from
same workstation

network address impersonation
malicious user changes network address of their workstation to impersonate
another workstation

eavesdropping, tampering, replay
malicious user eavesdrops, tampers, or replay other users’ conversations
to gain unauthorized access

user proves identity to trusted third party (TTP), requests a ticket for
service

TTP knows all users and services, can grant access

user gets a ticket

ticket is used to access service
TTP is on the network

convenient (but also single point of failure!)
requires high level of

ticket gives holder access to a network service
ticket proves that a user has authenticated
user should not be able to create a ticket

user should not be able to delegate tickets

authentication service encrypts some information with a key known

to the server
e.g., the printer can decrypt it, but not the user

the user simply forwards the ticket to the printer, but cannot
create one or read it
server decrypts the ticket and verifies the information

ticket must include everything to prevent abuse
user using tickets to other servers
user using tickets after they lose access
e.g., they’ve been fired
user giving tickets to other users to use

ticket includes:

user name
server name

address of user’s workstation
ticket lifetime

protocol:
user sends password to authentication server
server provides an encrypted ticket
problems:

insecure: eavesdropper sees the password and can impersonate
inconvenient: need to send the password each time to get the ticket
separate authentication for email, printing, etc.

protocol:
user authenticates to the key distribution centre (KDC)
gets a special ticket granting service (TGS) ticket
user gives TGS ticket to TGS server when needed
gets encrypted service ticket (e.g., for printer)
user gives ticket to printer

ticket hijacking
malicious user steals service ticket
uses it on the same workstation
network address verification doesn’t help
server must verify that the user who gives the ticket is the same who was issued

no server authentication

attacker may misconfigure the network so they receive messages sent to server
deny service or capture private information

K. is a long-term key of client C
derived from the user’s password

K. ¢ is a long-term key of the TGS
known by KDC and TGS

K, is a long-term key of network service V
known to V and TGS; each V has its own key

K¢ 15 1S @ short-term session key b/w C and TGS

created by KDC, known to C and TGS

K. IS @ short-term session key b/wCandV
" created by TGS, known to C and TGS

workstation

Alice

Alice

workstation

enter password

Alice

workstation

enter password

pbkdf

workstation

Alice

workstation authentication service

Alice knows all clients
k, and their passwords

Alice

workstation

ID

a’

ID

TGS

authentication service

Alice

workstation

ID

a’

ID

TGS

authentication service

get A’s password

Alice

workstation

ID

a’

ID

TGS

authentication service

get A’s password

derive k

Alice

workstation

ID

a’

ID

TGS

authentication service

get A’s password

derive k

knows TGS and K gg

workstation authentication service

Alice

ID,, IDggs get A’s password

derive k

knows TGS and K g

{ka,TGS ; IDqggs , time ,. , lifetime, ticket .}k,

workstation authentication service

RAM
Alice
ka
ID,, IDggs get A’s password
derive k
knows TGS and K g
{ky rgs + IDpgg , time,,. , lifetime, ticket g 5lk,

\ all this is encrypted with k /

a

workstation authentication service

RAM
Alice
ka
ID,, IDggs get A’s password
derive k
knows TGS and K g
{ka,TGS y IDgpgs , time, , . , lifetime, ticket clk,

T

this is the session key for Alice and TGS

workstation authentication service

RAM
Alice

ka

ID,, IDggs get A’s password

derive k
knows TGS and K g
{ka,TGS y IDgpgs » time, , . , lifetime, ticket clk,
tiCketTGS={kA,TGS’ ID, , time,.,, lifetime, ID .., addr,lk..¢

workstation authentication service

RAM
Alice

ka

ID,, IDggs get A’s password

derive k
knows TGS and K g
{ka,TGS y IDgpgs » time, , . , lifetime, ticket clk,
tiCketTGS={kA,TGS’ ID, , time,.,, lifetime, ID .., addr,lk..¢

\

Alice can’t understand this, but is expected to deliver it to TGS

alice

wants
to
print

alice %
a, TGS

lpr

alice

print a

ka, TGS

need

ka,v for s
printer v

have
ticket ;qg

alice

print

need
ka,v
have

ticket ;qg

k., res

ID ticket pqq

v/

ticket granting service

for all services

{IDa,add:I:'a,timea}ka,.I.Gs

V knows k

knows K pes

can decrypt
ticket g

alice

print

need
ka,v
have

ticket ;qg

k., res

not encrypted because no key
exchange has been done yet

ID ticket pqq

v/’

ticket granting service

for all services

{IDa,add:I:'a,timea}ka,.I.Gs

V knows k

knows K pes

can decrypt
ticket g

alice

print

need
ka,v
have
ticket ;qg

k., res

not encrypted because no key
exchange has been done yet

ID

v/’

ticket pqq

ticket granting service

for all services

{IDa,add:lra,timea}ka,.ms

T

called
authenticator

V knows k

knows K res

can decrypt
ticket g

alice

print

need
ka,v
have

ticket ;qg

k., res

ID

v/

ticket pqq

ticket granting service

for all services

{IDa,add:I:'a,timea}ka,.I.Gs

V knows k

knows K pes

can decrypt
ticket g

{k

a, v/

ID,,time pqq,

lifetime, ticket v}ka,TGS

alice

print

need
ka,v
have

ticket ;qg

k., res

ID ticket pqq

v/

ticket granting service

for all services

{IDa,add:I:'a,timea}ka,.I.Gs

V knows k

knows K pes

can decrypt
ticket g

{k ID,,time pqq,

a, v/

lifetime, ticket v}ka,

all encrypted with k

TGS

a,tGs

which TGS can decrypt from

ticketTGS

alice

ticket granting service

print

need
ka,v
have

ticket ;qg

k., res

ID ticket pqq

v/’

{IDa,add:I:'a,timea}ka,.I.Gs

{k ID,,time pqq,

a, v/

for all services
V knows k

knows K pes

can decrypt
ticket g

//////,,,/;r

ticket , = {K ID, addr_,ID

a, v/’

lifetime, ticket v}ka,TGS

time ., lifetime}k

v/

alice

ticket granting service

print

need
ka,v
have

ticket ;qg

k., res

ID ticket pqq

v/’

{IDa,add:I:'a,timea}ka,.I.Gs

{k ID,,time pqq,

a, v/

for all services
V knows k

knows K pes

can decrypt
ticket g

//////,,,/;r

ticket , = {K ID, addr_,ID

a, v/’

lifetime, ticket v}ka,TGS

time ., lifetime}k

v/

all encrypted with k

alice

ticket granting service

print

need

ka,v

have
ticket ;qg

ticket ,

ID ticket
k Vi TGS for all services
a
{ID,,addr,, time_}k, ;o5 | U KPOWS Ky
a, TGS
knows K pes
a,v

can decrypt
ticket g

{k ID,,time pqq,

a, v/

lifetime, ticket v}ka,TGS

//////,,,/;r

ticket = {Ka'v, IDa, addr_,ID, time, ., lifetime}k

alice

print

have

ticket ”

ticket

GS

ticket

printer v

{IDa,addra,timea}ka,v

alice

print

have

ticket
T

ticket

GS

ticket

printer v

{IDa,addra,timea}ka,v

decrypt
ticket to
get k,_

alice

print

have

ticket
T

ticket

GS

ticket

printer v

{IDa,addra,timea}ka,v

decrypt

ticket to
get k,_

decrypt
authenticator

alice

print

have

ticket
T

ticket

GS

ticket

printer v

{IDa,addra,timea}ka,v

decrypt

ticket to
get k,_

decrypt
authenticator

verify addr _

alice

print

have

ticket
T

ticket

GS

ticket

printer v

{IDa,addra,timea}ka,v

{time, + 1}k, ,

decrypt

ticket to
get k,_

decrypt
authenticator

verify addr _

alice

printer v

ticket
print k . k,
{ID,,addr , time }k , decrypt
have a, TGS ticket to
ka,v get ka,v
ticket TGS decrypt
. authenticator
ticket

verify addr _

{time, + 1}k, ,

compute a non-trivial function on
time_ that proves knowledge of k
and thereby knowledge of k

a,v

v

one KDC isn’t enough
network is divided into

KDCs in different realms have different key databases

to access a service in another realm, users must:

get a ticket for home-realm TGS from home-realm KDC
get a ticket for remote-realm TGS from home-realm TGS
i.e., were the remote-realm TGS just a normal home-realm network service
get ticket for remote service from that realm’s TGS
use remote-realm ticket to access service

short-term

long-term secrets used only to secure delivery of short-term keys

separate session key for each user-server pair

re-used by multiple sessions between same user/server

symmetric crypto only

fast, no expensive operations
trusted third party

new users only need to register a password

proof of identity based on
client encrypts his identity, addr, time with session key
knowledge of key proves client has authenticated to KDC
also prevents replays if clocks are globally synchronized
server learns this key separately
via encrypted ticket that client can’t decrypt
verifies client’s authenticator

