
Lab 6 and 7 - Signals

Signal

A signal is a way to notify a process that an event has occurred
There is a list of defined signals that can be sent (or you can define your own): SIGINT, SIGSTOP, SIGKILL, SIGCONT, etc.
A signal is really a number (e.g. SIGINT is 2)
A program can do something in response to a type of signal being received
Signals are sent either by the operating system, or by another process
You can send a signal to yourself or to another process you own

Signals

Here are some examples of signals:

SIGINT - when you type Ctl-c in the terminal, the kernel sends a SIGINT to the foreground process group. The default behavior is to terminate.
SIGTSTP - when you type Ctl-z in the terminal, the kernel sends a SIGTSTP to the foreground process group. The default behavior is to halt it until it is told to
continue.
SIGSEGV - when your program attempts to access an invalid memory address, the kernel sends a SIGSEGV ("seg fault"). The default behavior is to terminate.

Process Lifecycle

Running - a process is either executing or waiting to execute
Stopped - a process is suspended due to receiving a SIGSTOP or similar signal. A process will resume if it receives a SIGCONT signal.
Terminated - a process is permanently stopped, either due to finishing, or receiving a signal such as SIGSEGV or SIGKILL whose default behavior is to
terminate the process.

Sending Signals

The operating system sends many signals, but we can also send signals manually.

int kill(pid_t pid, int signum);

// same as kill(getpid(), signum)

int raise(int signum);

kill sends the specified signal to the specified process (poorly-named; previously, default was to just terminate target process)
pid parameter can be > 0 (specify single pid), < -1 (specify process group abs(pid)), or 0/-1 (we ignore these).
raise sends the specified signal to yourself

Signal Handlers

We can have a function of our choice execute when a certain signal is received.
We must register this "signal handler" with the operating system, and then it will be called for us.

typedef void (*sighandler_t)(int);

...

sighandler_t signal(int signum, sighandler_t handler);

signum is the signal (e.g. SIGCHLD) we are interested in.
handler is a function pointer for the function to call when this signal is received.

Note: no handlers allowed for SIGSTOP or SIGKILL.

SIGCHLD

When a child changes state, the kernel sends a SIGCHLD signal to its parent.
This allows the parent to be notified its child has e.g. terminated while doing other work.
we can add a SIGCHLD handler to clean up children without waiting on them in the parent!

Waiting For Signals

Signal handlers allow us to do other work and be notified when signals arrive. But this means the notification is unpredictable.
A more predictable approach would be to designate times in our program where we stop doing other work and handle any pending signals.

benefits: this allows us to control when signals are handled, avoiding concurrency issues
drawbacks: signals may not be handled as promptly, and our process blocks while waiting

We will not have signal handlers; instead we will have code in our main execution that handles pending signals.

sigwait()

sigwait() can be used to wait (block) on a signal to come in:

int sigwait(const sigset_t *set, int *sig);

set: the location of the set of signals to wait on
sig: the location where it should store the number of the signal received the return value is 0 on success, or > 0 on error.
Note: Cannot wait on SIGKILL or SIGSTOP, nor synchronous signals like SIGSEGV or SIGFPE.

sigprocmask()

The sigprocmask function lets us temporarily block signals of the specified types. Instead, they will be queued up and delivered when the block is removed.

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

how is
SIG_BLOCK (add this to the list of signals to block)
SIG_UNBLOCK (remove this from the list of signals to block)
SIG_SETMASK (make this the list of signals to block)

set is a special type that specifies the signals to add/remove/replace with oldset is the location of where to store the previous blocked set that we are
overwriting.

Note: forked children inherit blocked signals! We may wish to remove a block in the child.

Programming Exercises

1. sigint.cpp : This program installs a SIGINT handler to catch the SIGINT (Ctrl+c) instead of the default behavior of terminating the program. (Use Ctrl+z instead
to stop the program, and then kill -9 [PID] to terminate it (you can use SIGKILL instead of 9)).

2. sig_children.cpp : This program illustrates how a SIGCHLD handler can be used to reap background child processes (and have it work when all background
processes take varying lengths of time to complete).

3. sigwait.cpp : This program is the same as sigint.cpp but instead of using a signal handler to handle SIGINT it waits for SIGTSTP signals using sigwait and then
prints out a message to the user instead of the default behavior of terminating the program. (Use Ctl-c instead to stop the program).

4. sig_children_2.cpp : This program illustrates how we can wait for SIGCHLD signals using sigwait instead of a signal handler to clean up background child
processes.

	Lab 6 and 7 - Signals
	Signal
	Signals
	Process Lifecycle

	Sending Signals
	Signal Handlers
	SIGCHLD
	Waiting For Signals
	sigwait()
	sigprocmask()

	Programming Exercises

