
Lab 5 - Interprocess CommunicationLab 5 - Interprocess Communication

Interprocess CommunicationInterprocess Communication

It's useful for a parent process to communicate with its child (and vice versa)
There are two key ways we will learn to do this: pipes and signals

Pipes let two processes send and receive arbitrary data
Signals let two processes send and receive certain "signals" that indicate something special has happened.

PipesPipes

A pipe is a set of two file descriptors representing a "virtual file" that can be written to and read from
It's not actually a physical file on disk - we are just using files as an abstraction
Any data you write to the write FD can be read from the read FD
Because file descriptors are duplicated on fork(), we can create pipes that are shared across processes!

This method of communication between processes relies on the fact that file descriptors are duplicated when forking.

Each process has its own copy of both file descriptors for the pipe
both processes could read or write to the pipe if they wanted
each process must therefore close both file descriptors for the pipe when finished

This is the core idea behind how a shell can support piping between processes (e.g. cat file.txt | uniq | sort).

dup2dup2

The dup() system call allocates a new file descriptor that refers to the same open file description as the descriptor oldfd. The new file descriptor number is
guaranteed to be the lowest-numbered file descriptor that was unused in the calling process.

int dup2(int oldfd, int newfd);

Virtual MemoryVirtual Memory

Core Idea: have the processes work with virtual ("fake") addresses. The OS will decide what physical addresses they actually are.

Challenges with multiple processes running:

how do we partition memory? -> The OS decides as it goes
what if one process accesses the memory of another? -> Virtual address spaces are separate and monitored by OS
what if we run out of physical memory? -> OS can play tricks to swap memory to disk when needed, and map addresses only on demand.

Programming ExercisesProgramming Exercises

1. pipe.cpp : This program demonstrate a basic use of pipe.
2. pipe_fork.cpp : This program shows how pipe works across child and parent processes.
3. subprocess.cpp : Implements the subprocess routine, which is similar to popen and allows the parent process to spawn a child process, print to its standard

output, and then suspend until the child process has finished.
4. pipeline.cpp : This example presents the implementation of the pipeline routine, which is similar to subprocess and allows the parent process to spawn two

child processes, the first of which has its stdandard output forwarded to the second child's standard input. The parent then waits for both children to finish.

	Lab 5 - Interprocess Communication
	Interprocess Communication
	Pipes
	dup2
	Virtual Memory
	Programming Exercises

