
Lab 2 - Filesystem System CallsLab 2 - Filesystem System Calls

File DescriptorsFile Descriptors

A file descriptor is like a "ticket number" representing your currently-open file.
It is a unique number assigned by the operating system to refer to that file
Each program has its own file descriptors
When you wish to refer to the file (e.g. read from it, write to it) you must provide the file descriptor.
File descriptors are assigned in ascending order (next FD is lowest unused)

System CallsSystem Calls

Functions to interact with the operating system are part of a group of functions called system calls.
A system call is a public function provided by the operating system. They are tasks the operating system can do for us that we can't do ourselves.
open(), close(), read() and write() are 4 system calls we use to interact with files.

open()open()

A function that a program can call to open a file:

int open(const char *pathname, int flags);

pathname: the path to the file you wish to open
flags: a bitwise OR of options specifying the behavior for opening the file the return value is a file descriptor representing the opened file, or -1 on error
Many possible flags (see man page for full list).
You must include exactly one of the following flags:

O_RDONLY: read only
O_WRONLY: write only
O_RDWR: read and write
Another useful flag is O_TRUNC: if the file exists already, clear it ("truncate it").

close()close()

A function that a program can call to close a file when done with it.

int close(int fd);

It's important to close files when you are done with them to preserve system resources.
fd: the file descriptor you'd like to close.
You can use valgrind to check if you forgot to close any files.

read()read()

// read bytes from an open file

ssize_t read(int fd, void *buf, size_t count);

fd: the file descriptor for the file you'd like to read from
buf: the memory location where the read-in bytes should be put
count: the number of bytes you wish to read
The function returns -1 on error, 0 if at end of file, or nonzero if bytes were read (may not read all bytes you ask it to!)

write()write()

// write bytes to an open file

ssize_t write(int fd, const void *buf, size_t count);

Same as read(), except the function writes the count bytes in buf to the file, and returns the number of bytes written.

Programming ExercisesProgramming Exercises

1. create_file.cpp : This program shows an example of creating a new file with a given name. Similar to the touch unix command, it creates the file if it doesn't
exist. But in this case, if it does exist, it throws an error.

2. copy.cpp : This program is the starter code for an example that shows how we can make a copy of a specified file into another specified file, similar to the cp
unix command.

3. copy_extended.cpp : This program is an implementation of an extended copy command that shows how we can make a copy of a specified file into multiple
other specified files, as well as printing the contents to the terminal.

	Lab 2 - Filesystem System Calls
	File Descriptors
	System Calls
	open()
	close()
	read()
	write()

	Programming Exercises

