
Part 3 - Authentication and API Gateway

We used the API endpoint using HTTPS to get the list of dragons.

Anyone with that API endpoint will be able to get that same data

which is probably fine for getting the list of dragons.

However, for adding a dragon via POST/dragons,

it would probably be a good idea to not make this public at all.

We should authenticate and authorize the call.

API Gateway supports this.

API Gateway protects the backend.

If someone that isn't authorized to access your application makes a request,

your backend, which is behind API Gateway, will never see that request.

What kind of authentication and authorization API Gateway supports?

It depends on the type of API you use.

For the REST API type,

the mechanism for API Gateway to do authentication and authorization are

Identity and Access Management,

API Gateway Lambda authorizers, and

Amazon Cognito user pools.

There are a few other mechanisms

related to access control around this type of API:

● API endpoint resource policy: resource policies applied at an API Gateway endpoint

● VPC endpoint policy: endpoint policies for interface VPC endpoint

● CORS: cross-origin resource sharing

● AWS WAF: a web application firewall

● Client-side SSL certificate

● Usage plans API keys

We will discuss each of these authentication and authorization mechanisms

as well as all of those access controls later in this lecture.

For HTTP APIs, the only way to do authentication and authorization

is by using JSON Web Tokens or JWT,

that are part of the OpenID Connect and OAuth 2.0 protocols.

What this means?

For HTTP APIs, the only way to do authentication and authorization

is by using JSON Web Tokens or JWT,

that are part of the OpenID Connect and OAuth 2.0 protocols.

This means that you can integrate with any third-party identity providers.

Because Amazon Cognito User Pools uses JWT as well,

it means that it's also a supported method of authentication.

To be able to further restrict certain routes to privileged users,

you can use authorization scopes.

For example, you may have GET/dragons

that you want anyone authenticated to be able to hit.

but for a POST/dragon,

you may only want to allow this action to specific individuals.

This is where the 'scope' parameter in the access token,

returned by an OAuth 2.0 identity provider, comes into play.

API Gateway Access Controls

You can use access controls on top of

IAM, AWS Lambda authorizers, and Amazon Cognito user pools.

This means that you don't have to choose between

Access Control and AuthN/AuthZ.

In fact, you can even combine multiple access controls as well.

1 - Client-side SSL Certificate

All access control mechanisms (except one)

are client-side where the request from the client comes in.

It is to prevent or allow the access in.

On the server-side, the only mechanism is

the Client-side SSL certificate.

On the server-side, the only mechanism is

the Client-side SSL certificate.

This is a mechanism to authenticate API Gateway itself to your backend.

2 - CORS

CORS:

"cross-origin resource sharing"

is a browser security feature that restricts cross-origin HTTP requests.

Let’s say that the website of your application is www.example.com

and your API endpoint is dragons.api.com

Then if you have some Javascript that is executing as part of the clients browser, and is going to

dragons.example.com to fetch some data from your API, that mean that the script will make a

cross-origin HTTP request to dragons.example.com.

What cross-origin means here is that the origin or domain in the URL is different than the origin or

domain inside of the script.

only the clients coming from www.example.com, as their origin, are all allowed to query for your

dragons.example.com API.

In most cases, where the browser of a client makes a request to API Gateway,

you will need to configure CORS.

The origin of a webpage is determined by its protocol, domain name, and port.

For example, the following URL has

protocol http, domain name www.example.com, and port 80.

http://www.example.com/index.html

● http://wikipedia.org/a/ and http://wikipedia.org/b/ have the same origin

● http://wikipedia.org and http://www.wikipedia.org do not have the same origin

● http://wikipedia.org and https://wikipedia.org do not have the same origin

● http://wikipedia.org:81 and http://wikipedia.org:82 do not have the same origin

● www.example.com and dragon.example.com ?

● http://wikipedia.org/a/ and http://wikipedia.org/b/ have the same origin

● http://wikipedia.org and http://www.wikipedia.org do not have the same origin

● http://wikipedia.org and https://wikipedia.org do not have the same origin

● http://wikipedia.org:81 and http://wikipedia.org:82 do not have the same origin

● www.example.com and dragon.example.com do not have the same origin.

If you configure Cross-Origin Resource Sharing (CORS) on your server,

you can allow resources on your server to be accessed by web pages from different origins.

CORS is enforced by the browser and not the server.

When a web page makes a request to a different domain,

the browser sends an HTTP request with an Origin header indicating the source domain.

The server can then respond with appropriate

CORS headers to indicate whether or not the request is allowed.

recap

3 - AWS WAF

Recap

AWS WAF is a web application firewall

that can be used to protect your API from common web exploits.

You can use the managed rules for WAF

to address issues like OWASP top 10 security risks

which are regularly updated as new issues emerge.

OWASP Top Ten

https://owasp.org/www-project-top-ten/

It can also be configured to filter traffic based on rules that you define.

For example, you can filter any part of the web request,

such as IP addresses, HTTP headers, HTTP body, or URI strings.

4 - Usage Plan API Key

Recap

Usage Plans is related to limiting the access to authorize clients.

To use it, you first need to create an API key in API Gateway.

Let’s say you have a API Gateway

To use Usage Plans, you first need to create an API key in API Gateway.

You then must send this key to a client. This key is a string made up of alphanumerical characters.

When a client wants to send a request, it inserts this API key as the value of the HTTP header

x-api-key.

Not a good idea for authentication.

HTTPS request header is in clear text.

This mechanism is if you want to apply some

throttling or quotas to your REST API per client.

For example, a quota of 100 requests per month and a throttling of 10 requests per second.

5 - API Endpoint Resource Policy

Recap

A few AWS services have Resource Policy capability,

like API and S3.

It allows you to create resource-based policies

to allow or deny access to your APIs and methods, using IAM conditions elements.

IAM conditions elements includes users from a specific AWS account,

a specific source IP address range,

or a specific Virtual Private Cloud or VPC endpoint.

Let’s see an example

Let's look at an example in the API Gateway console on the dragons API.

allowing everyone to invoke the GET/dragons.

allowing everyone to invoke POST/dragons but only if you come from this IP address.

The resource policy access control mechanism is great

for cross AWS account access and applying more restrictions to the other authorizers.

It's also great for limiting access only to certain ranges of IP addresses.

6 - VPC Endpoint Policy

Recap

You can create a private API that is only reachable

from inside of your Virtual Private Cloud or VPC.

Let say you have a private API

If you want to access this private API from an EC2 instance inside the VPC, you must use a VPC

interface endpoint.

Interface endpoints are powered by AWS PrivateLink technology that

enables you to privately access AWS services by using private IP addresses.

Keeps the traffic entirely within AWS and not exposing your API to the internet at all.

We covered six different mechanism for controlling and managing access to a REST API in API Gateway.

Authentication and Authorization

Authentication: process of using

supporting evidence to corroborate an asserted identity

Identification (recognition): establish

identity from available information (without assertion)

Authorization: determining if

a request should be granted based on an entity

User Authentication

● something you know

○ e.g., password, pin code

● something you have

○ e.g., hardware token, bank card

● something you are

○ i.e., biometrics

○ e.g., fingerprint, iris

Recap

In the "Resources" section, choose the specific execution method you wish to associate with an

authorization.

 This means you can pick an authorization type,

that's different per method of execution.

For example, you could keep GET/dragons, without authorization for public.

Then add authorizations for POST/dragons.

Since authorization is the first step, that API Gateway shall process when receiving a request, the

authorizer option is in the Method Request.

You can select the appropriate authorization.

In this case, only AWS IAM is available.

In this case, only AWS IAM is available,

as we haven't created any Lambda, or Cognito User Pool authorizers yet.

AWS IAM adds the same authentication and authorization on top of your API,

that is available in front of any AWS service.

This is done via an access key and a secret key,

using the Signature Version 4 protocol.

AWS IAM is typically used for server to server communication.

For example, if your code was running in

a container in Elastic Container Service or, on an EC2 instance,

and it was making a call to your API,

then you should authenticate and authorize it via IAM.

The same way, as if your code was to make a call, to a service of AWS like S3.

AWS IAM is for server to server communication.

Your code running in AWS,

speaking to API Gateway,

and communicating with your server backend.

To use the other two authorizers,

you will need to configure the service itself first.

For example, you will configure a new Cognito User Pool first,

then, you will configure an authorizer in API Gateway.

Click on Create New Authorizer

Here you can see the other two authorizers: Lambda and Cognito.

We will go in details on how Cognito works in the next lecture.

You will use it for a web or a mobile application, to authenticate to API Gateway.

Servers making calls to API Gateway using IAM as the authorizer.

Web and mobile applications use Cognito User Pool to authorize.

What could we possibly need now?

Customization and Flexibility.

Lambda provides the greatest flexibility.

But it comes with a price:

you have to code it.

What Lambda authorizer allows you to do,

is call a piece of code that is executed whenever a request is made.

This means, you can integrate with any authentication tools that you want,

as you are responsible for coding the authorizer.

We will discuss Lambda next lecture.

Let’s see how this authorizer actually works.

a client that wants to go through API Gateway, to access a backend.

Assume we have created a authorization code using AWS Lambda.

First, the client will send a request with some parameters. Those parameters could be a token,

username password, or anything that is required to authenticate them.

These requests parameters will then be sent the authorization code in Lambda.

That code can do whatever it wants, using those authentication parameters.

Maybe it could call an OAuth 2.0, or SAML identity provider,

or maybe it will call LDAP or Active Directory.

Then, that code needs to return a principal and a policy.

The principal is the definition of this user.

Maybe it's a username, or user ID, or anything that identifies this client uniquely.

The policy, is like an IAM policy it defines what the user is allowed to do, and not.

This policy is going to be evaluated.

and it will be cached, so that the subsequent request, don't need to go through the authorization

code again.

IAM,

Lambda,

and Cognito,

are your three available options for

authentication and authorization for REST APIs.

Amazon Cognito

Amazon Cognito is a identity management service provided by AWS.

Cognito provides features like user sign-up, sign-in, and access control,

making it suitable for web and mobile app development.

It supports various authentication methods

including username/password, social identity providers, and multifactor authentication.

Amazon Cognito service is made up of two services:

User Pool and Federated Identities (or identity pool).

Let's start with Cognito User Pools.

This service is a user directory,

which you can also refer to as an identity provider.

It allows you to sign up users with email or phone number validation,

sign them in, help them reset their password,

and even ask them to do multi-factor authentication.

User pool also has an option for a hosted user interface.

Instead of having to create your own web page for

asking your users for their username and password,

AWS already created web pages for this workflow,

which you can customize and AWS will host it for you.

The first step is that the client needs to authenticate to Amazon Cognito user pool.

Once authenticated, user pool, we'll send back an OAuth 2.0 protocol JSON Web Token or JWT.

The client can then send a request to API Gateway using that JWT token.

API Gateway will validate that token with the user pool.

and if everything checks out, it will allow the request to the backend.

Another great feature of user pool is that

you can add triggers to specify your own code.

For example, you could run your own code,

at the time that someone signs up

to add this user to a backend database during that time.

User pool can also do federation within user pools.

Instead of authenticating the user on user pool itself,

and hosting the user name and password,

you can have them authenticate via a third party.

This way, the user doesn't have to create and remember yet another set of credentials.

The first step is for the client to authenticate via OpenID Connect, SAML, or some social sign-in

providers

After the user sign in, the client will receive a token.

client sends a request to Cognito user pool, to exchange the token received from one of those third

party and get a JWT token in return.

Before providing the JWT token, Cognito will validate the token with the provider.

Then it will create a copy of the information it just received. A new copy of this user info.

And it will finally return the JWT token to the client.

The client can then use that JWT to authenticated and authorized to API Gateway.

API Gateway which will again validate the JWT token with user pool.

And finally allow (or not) access to the backend.

why not just directly integrate your backend with the social providers?

Why have Cognito user pool in the middle of all of this?

why not just directly integrate your backend with the social providers?

Why have Cognito user pool in the middle of all of this?

Authorization.

Cognito is for the time that you wanted to give certain users different permissions.

You can assign the user copy

with some permissions or authorization scopes within Cognito user pool.

Let's talk about the second service of Amazon Cognito

Federated Identities

This is a service that's used to assign IAM roles

to users who authenticate through a separate identity provider.

Let's look at a workflow of Federated Identities.

First, the client will log in to a login provider.

Cognito user pool and Federated Identities?! We'll come back to that later.

Then once you're done with that login, the response (jwt token) will be sent back towards the client.

Then the client will send the API call, GetID, to the identity pool, using the token it received from the

login provider.

That token will be validated with the login provider and identity pool Will let the login provider and

the client know about it.

That token will be validated with the login provider and identity pool Will let the login provider and

the client know about it.

Next, the client will use the API call, GetCredentialsForIdentity request, for specifying what IAM role it

would like to become.

That will be validated against the login provider

Cognito identity pool, will request AWS temporary credentials from AWS IAM.

Credentials will then be returned to Cognito, and back to the client.

Finally, the client can use those AWS credentials to access any AWS services.

Up until now, we directly authorize Cognito user pools,

in API Gateway via JSON Web Tokens.

And now, with Cognito Federated Identities,

we can actually authenticate with one of those login providers,

which includes Cognito user pool!

That means there's two ways to authenticate to API Gateway!

Let go through the workflow of these two services that are working together.

First, the client will authenticate and get a JWT token from Cognito user pool.

Then it will exchange that JWT token for AWS credentials, via Cognito identity pool.

Now, it can use those credentials to access any AWS services, including API Gateway.

Which one should I choose?

authorizing directly via Cognito user pool or using Federated Identities (identity pool)?

If you only need to communicate with API Gateway

and you want your backend to have more information about the user,

then integrating with API Gateway directly with user pool is a good idea.

If you need to communicate with almost any other AWS services directly,

then you will need to use the Federated Identities.

The last feature of Federated Identities we want to discuss is

the unauthenticated identity.

You can give a default IAM role,

for anyone that doesn't have credentials to authenticate.

For example, this could be to provide a very small amount of access to your backend,

while the user isn't authenticated yet, or just doesn't want to.

This is something that Federated Identities provides via unauthenticated identities.

It's a great way to provide temporary credentials to users,

even if they don't want to share their identities with you.

Use Amazon Cognito to Sign In and Call API Gateway

Let’s go over a demonstration of how to configure API Gateway

to authenticate users via an Amazon Cognito User Pool.

A client (a browser) wants to interact with the Dragons API

Our goal is to add authentication and authorization

to the GET/dragons API.

The first step is create an S3 bucket that we'll be hosting the website.

It's a very basic website with only two files: index.html and callback.html

The second step is to create a Cognito User Pool.

Define the client application specifying that when the user is authenticated, redirect that user back to

the callback HTML page in S3.

also configure it with the hosted UI to sign up and sign in the user.

third, configure the dragons API and API Gateway to add it onto an authorizer pointing to this Cognito

User Pool, and then I will add this authorizer to the GET/dragons API.

Let’s go to do that.

First we need to create our website in S3.

Here we are in the S3 console to create a brand new S3 bucket.

select a name

it’s fine for a website to be fully public

acknowledge and create the bucket.

Now, It's time to add our website with

two files, right index.html, callback.html.

But we need to modify one of this to add some information about

our Cognito User Pool later.

So we only upload callback file now.

click on the bucket name

Files?

select grant public read access to this object

click on the upload button.

Step number two is to configure our user pool.

Cognito console

which service? in this case, we use the user pool

remember the name of your cognito user pool for later use

You can see in this page what those default features are.

The next step is to configure the domain name of our hosted UI

to do the authentication and authorization for us.

Click on the Domain name here.

We can either configure and use a Cognito domain name

or our own domain name.

Next we need to define an App Client.

The user pool contains your users, their information

(username, password, email, phone number, etc.)

Now this user pool doesn't exactly relate to one application or one API Gateway.

It can be a one to many applications.

However, each one of those applications,

they need own settings for doing the authentication flow.

That's why we have app clients or application clients.

These are the definition of each one of these application

that is going to use Cognito User Pool as their database of users.

This refresh token expiration is how long a user can stay logged in.

remove this generate client secret checkbox. This is more for a server to server communication.

The next step is to change some configurations in the app client settings that goes back to this app

client that we just created.

Enable Cognito as identity provider for this application.

Then we need a callback URL so when our hosted UI will be done with authentication, send a client

back to our website with the authentication token. So this is the URL of my callback file in S3.

in S3 console, click on the callback file, and copy its object URL name

enable implicit grant here. This means that the JWT token will be returned back to the client and not

be hidden or be using some kind of back channel for this.

what scopes we would like to give as part of the JWT token. This is going to be part of that token itself.

So in case the backend will like to use them, select them.

You can test UI here

This allows users to sign in and sign up (won't need to code).

If it does not look pretty according to your standards,

remember that you can modify all of that.

Now that we have this login page,

we can use it in our index.html file.

Because that's where we want to point our users to

when the user click on the sign in button.

This is the index.html.

Link the button to the login page url.

Now we can upload this index.html file back into that S3.

Now everything with S3 and Cognito is done.

recap

The last step is to configure an authorizer

in API Gateway and modify Get/dragons

API Gateway console

Create New Authorizer

Add the name of our Cognito User Pool. In our example, it was demo.

Now we need to tell API Gateway what will be the name of the HTTP header that will contain the JWT

token that will be passed to it. For this application, use the authorization header.

The next step is to modify our resources that we have for this API.

Deploy API

Done!

It's time to test it.

First, let show that via using Postman without authentication,

it's not going to allow us in.

Status 401 (unauthorized)

i.e. I'm not authorized to access to this API.

Perfect!

That's exactly what we wanted.

Let go through the flow of authentication and authorization

 all of these tools that we have been using so far.

First, the client will send a GET requests for the index page inside of S3.

Then the client will click the sign in link inside of that page that they received,

When the client will sign in (or after sign up), the hosted UI will send a redirect back to the client,

pointing to the S3 callback.html page with the JWT token inside of it.

Then the client will take that token and use Postman to execute a GET/dragon, passing the

authorization, and then that will be sent into API Gateway.

Then API Gateway will validate that token with Cognito User Pool.

 if that's successful, it will return the dragons.

Get the index url from S3.

callback.html

Let’s use this JWT token inside a request via Postman.

Recap - (we selected token source as authorization. That's the name of the header.)

So inside of Postman, the same request we had, under headers, add a new key and they called that

authorization, then add a value, which is the token that we copied.

Done

We went through the entire flow of how to authenticate a client's request to

an API Gateway using a Cognito User Pool.

Lab 3 - API Authentication
Exercise 3: Amazon Cognito Authentication

https://aws-tc-largeobjects.s3.amazonaws.com/DEV-AWS-MO-BuildingRedux/exercise-3-cognito.html

In this lab, you will continue to build the Dragons application in your AWS account.

You will start by upgrading your application programming interface (API) and application to use

Amazon Cognito user pools for authentication.

You will then create the user pool and update the REST API to require authentication.

Finally, you will deploy an updated version of the application,

which sends the user to a sign-in webpage.

Exercise 3: Amazon Cognito Authentication

https://aws-tc-largeobjects.s3.amazonaws.com/DEV-AWS-MO-BuildingRedux/exercise-3-cognito.html

