
Part 02 - Amazon API Gateway

API Driven Development

An API is an interface.

An interface essentially defines how you can interact with a resource.

An interface has defined actions, defined inputs, and defined outputs.

The beauty of this interface is that is abstracts what is going on

in the kitchen from the consumer.

Interfaces allow you flexibility when it comes to programming.

You can define how you want your clients or consumers to interact with your service.

You define the actions, inputs, and outputs.

From there, you can implement it however you want behind the scenes,

and as long as you are fulfilling your end of the bargain and

the outputs are what they should be given the input,

no one using the interface needs to know or care about the implementation.

One way we use APIs is to expose services to one another.

If I have a program that is composed of five different microservices,

they would all communicate via a technology-agnostic communication protocol.

Like using RESTful HTTP-based calls.

As long as the service can speak HTTP, it doesn't matter what each service is implemented in.

Maybe one service is best written in Python,

but another service is best written in C++.

Doesn't matter because you are enforcing the use of interfaces through your APIs.

Note: When the API doesn't change, everything works nicely.

Once your APIs are defined and shared with clients,

it's important that you do what you can to maintain backwards compatibility with changes.

This is why it is so important to make sure you are spending time designing

your APIs up front and exploring what the actions, inputs, and outputs should be.

Following the practice of designing the API first

is called API-driven development,

where the first artifact created out of building a new service is the API.

Once the API is created, the front-end, or clients,

using the API and the actual implementation of the API can be built in parallel.

At the end, when both pieces are done,

they should be able to communicate seamlessly as long as the

back-end implementation adhere to the API that was first designed and it didn't get changed.

To wrap it up here,

building APIs is like introducing a contract on

how you allow others to interact with your code.

What is API Gateway?

Let’s talk about the tools that help to manage and take advantage of APIs.

API Gateway is an AWS service

for creating, publishing, maintaining, monitoring, and securing

REST, HTTP, and WebSocket APIs at any scale.

App developers can create APIs that access

AWS or other web services as well as data stored in the AWS Cloud.

While an API developer can gain the ability to create and deploy an API,

enabling the necessary functionality in API Gateway,

an app developer can build a functioning application

to call AWS services by invoking the created APIs.

While we'll go more into detail on the use of API Gateway later,

let's talk more about what the service provides.

This service can be used to create HTTP, REST and WebSocket APIs.

WebSocket APIs operate using lower-level protocols based on sockets and ports

and requires the use of IP addresses and port information.

It is bidirectional, stateful, vertically scalable,

and is ideally used for real-time scenarios such as a chat application as part of a game.

REST (Representational State Transfer) is an architectural style

for designing networked applications that utilize the HTTP protocol.

Unlike WebSocket APIs which rely on lower-level protocols,

REST operates over standard web protocols and is stateless.

It focuses on resources, which are uniquely identified by URLs, and uses standard HTTP

methods (GET, POST, PUT, DELETE) to perform actions on these resources.

This makes it a robust choice for applications that primarily involve

creating, retrieving, updating, and deleting data.

RESTful services are widely used for tasks like fetching web pages, accessing web APIs, and

manipulating data in web and mobile applications.

HTTP operates on a request-response model.

A client sends an HTTP request to a server,

which processes the request and sends back an HTTP response.

We focus on REST APIs,

which are fast, stateless, standard, horizontally scalable and dependable.

Other features provided by API Gateway:

● Canary deployments for safety and rolling out changes

● AWS CloudTrail integration for logging

● Amazon CloudWatch integration for monitoring

● Support for custom domain names to throttling of requests

● Direct integration with other AWS services

including AWS WAF, AWS X-Ray and AWS Lambda.

A method represents a client-facing interface

by which the client calls the API to access backend resources

and refers to the particular HTTP verb used with a request.

Note: The most common HTTP verbs are:

● GET: Used to retrieve data from a server.

● POST: Used to send data to be processed by a server.

● PUT: Used to update a resource on the server.

● DELETE: Used to remove a resource from the server.

● And others like PATCH, OPTIONS, etc.

API Gateway provides multiple endpoint types that you can utilize.

An API endpoint type refers to the host name of the API.

It can be edge optimized, regional or private

depending on where the majority of your API traffic originates.

Edge optimized API endpoints are best for geographically distributed clients.

Requests are routed to the nearest Amazon CloudFront point of presence.

This is the default type for API Gateway REST APIs.

A regional API endpoint is intended for clients in the same region.

When a client running an Amazon EC2 instance calls an API in the same region

or when an API is intended to serve a small number of clients with high demands,

a regional API endpoint reduces connection overhead.

Private API endpoints are a great way to provide a client secure access

to resources inside of an Amazon virtual private cloud.

Private APIs are isolated from the public internet and

they are only accessed using VPC endpoints for API Gateway that have been granted access.

Dragon API: API Gateway Terminology

In this section, we're going to build the first method of our dragon API.

To start, we'll be going through the console

and exploring some of the different pieces you can configure, as well as what they mean.

You can build an HTTP API.

This is designed to offer REST-base HTTP API's at low latency and low cost.

HTTP API's are used to proxy backend resources and are supposed to be simple and fast.

This is great for when you want API Gateway to

simply take in a request, authorize it and pass it on to the

backend resource like a Lambda function or an HTTP endpoint.

WebSockets unlike HTTP, is a stateful communications protocol.

WebSocket API's allow for support for applications

that need real time data or real time communication.

REST API's with API Gateway uses HTTPS and is stateless.

This is very similar to HTTP API's, but it offers some different functionality.

REST API's allow you to have full control over

the response and requests between your client and API Gateway.

You can apply what are called models and mappings

to validate and transform requests and responses.

We will talk about this more in upcoming sections.

Private API is the same thing as a normal REST API,

but it allows to set up an API that can only be accessed from a VPC, creating a private API.

This is useful for internal APIs

that you do not want to expose to outside clients.

We're going to select the public REST API,

because we have some use cases that require

we validate and transform incoming requests before they reach the backend.

On the left hand side is the Navigation, for everything you can configure for an API.

We're going to talk about most of these things,

but for now though, we're just going to keep it simple.

I want to create an API that allows me

to submit a request and responds with a 200 OK

but doesn't actually hit any real backend.

To do that, I need to first create a resource.

A resource is an abstract concept

that allows you to expose a “thing” to be consumed by a client.

For our example, we will be building out the dragons API.

So the resource is the dragon data.

Enable CORS on the resource.

This will enable cross origin resource sharing for this API,

and this will be used for future use.

Resources in API's have methods that allow you to interact or submit actions to a resource.

In our dragon example, we will be using HTTP methods like GET and POST.

But you can use whatever HTTP methods you like in your own APIs.

Let’s create a method.

Select the GET method here

Click the check mark. This brings up a screen for us to configure the integration type.

This is where you select what you want your API to sit in front of, and how you want your API to

integrate with that backend.

You can select

● Lambda function, where API Gateway is purely a proxy for that Lambda function.

● HTTP, where you can paste an endpoint that already exists and you want API Gateway to

front that.

● Mock, where you don't front anything real and instead, you just stub out the API.

● AWS service, where you can select another AWS service for API Gateway to front (which

we will go into detail on this later).

● VPC link, which allows you to expose resources inside of a VPC.

We're following an API driven development process

and want to design and build the API first.

So we will select Mock as the integration type.

The Mock integration type allows you to set up the API

and interact with it without ever needing to actually hit another service for the backend.

We can hardcode the responses we expect and test it

before building and integrating with a real backend.

Now we are brought to this screen, which shows the flow of the request and the response with API

Gateway.

Method request is the first step for API Gateway to accept a request. This is where you can apply

authorization and data payload validation.

Next, it is passed to the integration request. This is where you configure what backend service you are

fronting with API Gateway, as well as applying any sort of data transformations that you may require.

Once the request has passed the validation and the authorization and the transformation

steps, it will then send the request to the backend service.

In our case, since this is a mock endpoint,

it will take the request, do nothing and then send a response.

Integration response is an HTTP response encapsulating the backend response. You can configure how

your backend service responses map to HTTP responses and apply data transformations at this step.

Method responses are similar to method requests. They're responsible for validating and fitting

responses to models.

We can actually go ahead and just click on the test.

Leave all blank, and click test

Now, we have an API for our dragon resource with the GET method.

Again, this is mocked up. It's not doing anything real yet in the background,

but we are going to continue to Mock up our dragon API,

and then we will back it with the Lambda functions later on in the course.

Models and Mapping

API Gateway has a lot of great features that allow you

to offload some of the burden that might otherwise be on your back end services.

For example, it's oftentimes the back end service

that is checking the incoming payload for required fields, ensuring data is not null, or

checking that the data is formatted in a particular way, in order for the code to run properly.

API Gateway REST APIs provide a way to

validate incoming requests against models.

And data can be transformed in shape

by using API Gateway mappings.

Let's start with models

Models in API Gateway define the structure or shape of the payload of the request.

Models are created using JSON schemas,

which allow you to define the properties of the payload and their types.

When a request comes in, it will be validated against that schema.

And if API Gateway sees that the data cannot be fit into the JSON schema,

then API Gateway will return a 400-error response code to the client.

This frees up your back end

from having to do the sort of basic data validation.

Let's take a look at an example.

This is what a JSON payload for reporting a new dragon would look like.

And this is what the JSON schema for that payload would look like.

This schema is used to do request validation.

{
 "$schema": "http://json-schema.org/draft-07/schema#",
 "title": "Person Contact Information",
 "type": "object",
 "properties": {
 "firstName": {
 "type": "string",
 "description": "The first name of the person."
 },
 "lastName": {
 "type": "string",
 "description": "The last name of the person."
 },
 "email": {
 "type": "string",
 "format": "email",
 "description": "The email address of the person."
 },
 "phone": {
 "type": "string",
 "pattern": "^\\d{3}-\\d{3}-\\d{4}$",
 "description": "The phone number of the person in the format XXX-XXX-XXXX."
 }
 },
 "required": ["firstName", "lastName", "email"]
}

A Contact Information JSON schema using the JSON Schema Draft 7 standard.

Models can be applied to both method requests and method responses.

Note that each method for resource like GET, POST, etc. could have different models.

So these get applied at the method level, not at the resource level.

Now, let’s talk about Mapping.

It's fairly common to run into situations where your back end services are

expecting incoming data in a different format than the client is sending, or vice versa.

Instead of having to change your code to support the clients data structure,

wouldn't it be nice if API Gateway could handle that for you?

Luckily, it can. Mappings does this.

Mappings are applied to the integration request

and integration response of your API.

Mappings are written in Velocity Template Language, or VTL.

If you already have defined a model for the method,

API Gateway can generate a VTL blueprint for the mapping which you can then modify.

A mapping template assumes the data coming in as a JSON object by default,

and mappings do support other data types like XML.

Mappings support conditional statements,

can inject new parameters into the payload,

can hardcode values, which is needed for mocking,

map data in complex structures,

and can even reference data made available at runtime,

such as context and stage variables which we will cover later.

Creating a GET API with Mock Integration

In the last section, we created a REST API for the dragon resource

and setting it as a mock endpoint.

But, there isn't any data to provide a response.

In this section, we're going to continue that example

by adding a method for response with a mock integration in API Gateway.

A mock integration enables your API to return a response for a request directly,

without the need for a resource on the backend.

This is a way to develop the API independently

from the other parts of your distributed application.

Having a mock endpoint return a blank response,

isn't very helpful for testing.

So, we are going to be mocking what a real backend would do.

So now that we have an empty mock backend established,

I want to set up the response for the integration.

Go into the integration response

Expand the 200 method response status that we see already there.

Celect application/json that already exists under the content type.

Put your hard-coded response. The data is static, but it gives the appearance of a working API.

And after clicking test, we see the hard-coded data is coming back in the side pane.

What you'll see next is the addition of the functionality for the query parameters,

that enable querying the data by dragon family and dragon name.

Dragon API: Using Mappings

Now that you have an API created for your dragon data

and a basic GET method that returns some hard coded data

what we need to do now is ensure that our mocked API

can account for the fact that when we submit a GET request to our API,

we could be trying to list all dragons, list dragons by family, or list dragons by name.

One method will be handling all three of these use cases.

When you submit a request,

you will include a query parameter on the request, like this:

/dragon?dragonName=Atlas

/dragon?family=red

We must modify the mock endpoint to respond with different data

if one of these query parameters is present.

To make that happen, what I need to take advantage of is

the mappings that were applied to the integration response.

I'm going to modify the integration response

to check the query parameters using conditionals in VTL.

Click on the Integration Response.

Then navigate to the existing mapping, which is under Mapping Templates, click on application/json.

This is the existing mapping we have right now.

Mappings are written in VTL.

This means we can use conditionals in the mapping.

We added some conditionals and it is checking against this $input.params.

So what is this $input?

API Gateway provides variables that start with a $ sign

that give you access to payload and context information in your mappings.

dragon is the $input here:

/dragon?dragonName=Atlas

/dragon?family=red

add in some query parameters to the test

we got back just the Atlas dragon.

family=red

This API is responding as if there is a backend

but there isn't.

This method is now fully mocked up and we can move on to the next method.

DragonAPI: Using Models

Let's continue to build out our dragon API

and move on to adding the method that will handle the reporting a new dragon.

First, add a new POST method to the dragons resource.

This method is going to be used for reporting new dragons

so there will be a payload on the request that has the new dragons information.

One of the features API Gateway has

is to validate incoming requests based on models.

Let's use that feature with this request.

We first need to create a model. Click on the models section in the left-hand side.

Click on Create

Models in API Gateway are JSON schemas.

I paste in a pre-written JSON schema for the incoming dragon data that we expect to come in for the

POST request.

Name this dragon, give it the content type application/JSON, and then click create model.

Based on this model,

if the input deviates from the structure that we created,

I want API Gateway to reject the request before it ever hits my backend.

Navigate back to the resources and then POST method

The place you apply request validation is on the method request.

to actually validate this, select the request validator, select the validate body and then click save.

This error is what we would expect here because this is an empty request body

Successfully completed the execution with a sample request body.

API Gateway is now validating the incoming request against a model

and it is responding with the GET method with those mappings that we already had created.

That means that this API is totally mocked up.

So now we can deploy it and interact with it as if it was our real API.

Publish API

After creating your API, you must deploy it to make it callable by your users.

To deploy an API, you create an API deployment and associate it with a stage.

A stage is a logical reference to a lifecycle state of your API

(for example, dev, prod, beta, v2).

API stages are identified by the API ID and stage name.

They're included in the URL that you use to invoke the API.

Every time you update an API,

you must redeploy the API to an existing stage or to a new stage.

Updating an API includes modifying routes, methods, integrations, authorizers,

and anything else other than stage settings.

Our API is built and mocked, so now let's deploy it to a stage.

Click actions and the click deploy API.

create a new deployment stage

It gives you an invoke URL at the top. This is the endpoint for your API.

Now, we have our API deployed,

and we have an active endpoint.

Now, let’s test it out.

I don't want to use the test features built into the console, but instead.

Let’s actually hit this endpoint

from an external entity using a tool called Postman.

(You could use cURL on the command line as well)

Postman is not an AWS tool, but rather a tool

used very widely in the developer community.

The Postman API client allows you to

configure requests, invoke APIs and then view the result.

This is just to show you how to hit your endpoint

using a service that is outside of the AWS environment,

proving that your API is deployed and ready to go.

Sign into the Postman app

test with query parameter

To download and try out Postman for yourself click here:

https://www.postman.com/downloads

https://www.postman.com/downloads

Exercise 2: Amazon API Gateway

In this lab, you will continue to build the Dragons application.

First, you will build the REST API that’s used to list and add dragons.

You will create the API by using mock integrations.

You can use mock integrations to create a testable API

before you write any code for your backend services.

After the API is created, you will deploy an updated version of the web application.

The web application contains the frontend logic to access

the GET and POST methods of your /dragons resource.

Start from where you stopped at the end of Lab 1,

and continue to build the application.

Exercise 2: Amazon API Gateway

Upload a doc with a screenshot for each completed Task as a Lab report in Moodle.

https://aws-tc-largeobjects.s3.amazonaws.com/DEV-AWS-MO-BuildingRedux/exercise-2-api-mocks.html

Task: Deleting all lab resources

1. Delete the API Gateway DragonsApp API

○ Open the Amazon API Gateway dashboard.

○ In the navigation pane, choose APIs.

○ Delete the DragonsApp API and confirm the deletion.

2. Delete the S3 bucket for the Dragons application.

○ Open the Amazon Simple Storage Service (Amazon S3) dashboard.

○ Delete the bucket that ends with -dragons-app and confirm the deletion. You must empty the bucket before

you delete it.

3. Delete the AWS Cloud9 development environment for this project.

○ Open the AWS Cloud9 dashboard.

○ Delete the Python-DevEnv environment and confirm the deletion.

