
Assignment 2:

Transport Layer and Micro Servers

due: Friday, October 23, 2020 (11:59pm)

Transport Layer and Micro Servers (40 Marks)

Learning Objectives. The purpose of this assignment is to learn about client-
server network applications, TCP and UDP protocols, and data representation.
In particular, you use a combination of TCP and UDP data transfer services
to implement client-server programs (in Java) that provide different services to
users.

Assignment Description

Background. Both TCP (Transmission Control Protocol) and UDP (User
Datagram Protocol) are transport layer protocols used for sending bits of data
(known as packets) over the Internet. They both build on top of the Internet
protocol (IP). TCP is a connection-oriented protocol and UDP is a connection-
less protocol. TCP establishes a connection between a sender and receiver
before data can be sent. UDP does not establish a connection before sending
data. TCP is a reliable data transfer protocol. TCP and UDP are not the only
protocols that work on top of IP. However, they are the most widely used.

Assignment. Your primary task is to implement a client/server application.
The Server program offers several different services to the Client. Let’s call this
server program as Master Server.

Client and Master Server. In this assignment, you are supposed to imple-
ment a Client and a Master Server programs as described here:

• Client. There is only one Client program in this assignment. The client
makes a TCP connection with the Master Server. The Client’s interaction
with the Master Server will involve connecting to the server (by getting
Master Server’s IP and Port number via terminal), entering a sentence of
one or more words to be used as the source data, and then entering a loop

1



for interaction with the server (you shortly will see the list of interaction).
Within the loop, the client can specify what data transformations are
desired on the original sentence source data, and in what order. These
requests may involve one or more data transformations, to be performed
in the order specified.

• Master Server. The master server operates on sentence-like messages
entered by the user, and uses TCP as its transport-layer protocol, for
reliable data transfer with the client. The master server then commu-
nicates with six micro-services via UDP to perform the composed data
transformations on each word, prior to returning the final result data back
to the client via TCP. Additional client commands can be sent to apply
new transformations to the same original sentence source data. When the
client is finished with all data transformation requests, the session with
the master server ends.

Micro Servers. The micro-services can operate on a word or a sentence at
a time (your choice). These data transformation services will be offered via
UDP-based communication, which is simple and fast, but unreliable. There
will be several different micro-services running, each on a different port. The
master server needs to know which services are running where (i.e., IP address
and port), and send the data to the correct place for each data transformation
request.
The specific data transformation micro-services that you need to implement are:

1. Echo: This micro server returns exactly what was received.
For example, the message ”This is a test” would become ”This is a test”.

2. Reverse: This micro server reverses the message and returns the result
back.
For example, the message ”dog” would become ”god”.

3. Upper: This transformation converts all lower-case alphabetic symbols
(i.e., a-z) in a message into upper case (i.e., A-Z). Anything that is already
upper case remains unchanged, and anything that is not a letter of the
alphabet remains unchanged.
For example, the message ”This year is 2020” would become ”THIS YEAR
IS 2020”.

4. Lower: This transformation converts all upper-case alphabetic symbols
(i.e., A-Z) in a message into lower case (i.e., a-z). Anything that is not a
letter of the alphabet remains unchanged.
For example, the message ”This year is 2020” would become ”this year is
2020”.

5. Caesar: This transformation applies a simple Caesar cipher to all alpha-
betic symbols (i.e., a-zA-Z) in a message. Recall that a Caesar cipher adds
a fixed offset to each letter (with wraparound). Please use a fixed offset

2



of 2, and preserve the case of each letter. Anything that is not a letter of
the alphabet remains unchanged.
For example, the message ”I like dogs!” would become ”fqiu! nkmg K”
if operating on a sentence at a time, or ”K nkmg fqiu!” if operating on a
word at a time.

6. Yours: Design your own simple data transformation that is different from
those above, somewhat interesting, reasonably easy to implement and ex-
plain, and applicable to one or more of the data bytes in a typical message.

Please note (and obey) the numbering on the data transformation services
above, since they will be used for the client commands sent to the master server.
For example, if the source data ”I love cats!” is transformed using the command
”2154”, then the resulting data would be ”!uvce gxqn k” if operating on a sen-
tence at a time, or ”k gxqn !uvce” if operating on a word at a time. It is up
to your master server to coordinate this, and either is acceptable. Your master
server should also do something reasonable if no response is received from one
of the UDP-based micro-services within a certain time limit.

Testing. First, run all six micro servers. Then run your Master server. The
Master server should have the IP address and Port number of the micro servers.
The Client program should receive the Master server IP address and port num-
ber through the command line. Then the Client program should make a TCP
connection to the Master server. After receiving a Hello message from the Mas-
ter server, the Client should enter a Message. After confirming the message by
the Master server, the Client program should select a combination of operations
on the message. Finally, the Client program should be able to close the connec-
tion.

Upload in D2L and Grading

What to Upload in D2L You will compress all the Java files (Master.java,
Client.java, Echo.java, Reverse.java, Upper.java, Lower.java, Caesar.java, and
Yours.java) into a single zip file (A2.zip) and upload it with a one-page user
manual (PDF) in D2L / Assignment 2 folder.

Grading. The grading scheme for the assignment is as follows:

• 14 marks for the design and implementation of the main TCP-based
client-server solution to this problem. Your implementation should include
proper use of TCP and UDP socket programming in Java, and reasonably
commented code.

• 12 marks for a proper implementation of each of the UDP-based data
transformation services (6 of them, each worth 2 marks).

3



• 4 marks for a clear and concise user manual (at most 1 page) that de-
scribes how to compile, configure, and use your Web proxy. Make sure
to clarify where and how the testing was done (e.g., local host, CPSC
Machine), what works, and what does not. Be honest!

• 10 marks for a suitable demonstration of your server to your TA in your
tutorial section. A successful demo will include marks for the test cases
above, as well as clear answers to questions asked during your code walk-
through.

• Bonus (Optional): Up to 2 bonus marks are available if your program is
able to do one of the following tasks:

– your master server allows the dynamic creation, registration, and ter-
mination of micro-services while the master server is running, rather
than having them all started in advance.

– your creates a backup micro server, and it handles the offline micro
server jobs.

Helps Available

• Two tutorial sessions will be dedicated to providing helps on this assign-
ment.

• The instructor will perform an assignment demo in one of the upcoming
lectures.

• The instructor is also available during office hours (8am - 10pm on Mon-
days) or by appointments.

Tips.

• This is a rather challenging assignment, so please get started early. You
will likely need at least a week to get it fully working.

• For the micro-services, start with the echo server, which is the simplest
one. Once it is working, you can make the small changes required to create
the other micro-services. Test them individually, perhaps on a word at a
time.

• When debugging the master server, use just one micro-service initially.
Then try it with two, and make sure to keep track of which is which. And
so on.

• It might be helpful to have the master server put some fixed delays (e.g.,
1 second) in between the different stages of data transformation when you
are doing composed micro-services.

4



• Once you are testing on a real network interface, you may find Wireshark
particularly useful to look at the network packets being sent and received
by your application (i.e., ports, size, data content).

• Work with very small amounts of data (e.g., 1-5 words) to start with,
so that you can put verbose debugging in to test the functionality of
your application. Once these are working right, you can scale up to larger
datasets (e.g., 10-100 words) to tackle any new challenges that might arise.

Good Luck!

5


