Peer-to-Peer Netw. Appl. (2017) 10:208-215
DOI 10.1007/s12083-015-0420-5

@ CrossMark

Recommend top-k most downloaded files in the chord-based

P2P file-sharing system

Sina Keshvadi'

. Amir Masoud Rahmani? - Habib Rostami>

Received: 5 February 2015 /Accepted: 26 October 2015 /Published online: 10 November 2015

© Springer Science+Business Media New York 2015

Abstract Peer-to-peer (P2P) file sharing system provides a
platform that enables users to share their files over network
and provides a rapid and scalable content distribution mecha-
nism to access an explosive volume of shared files on the
system. The search mechanism in these systems is mainly
keyword-based, so, users may have to try different keywords
to find the desired file, where increase the network traffic.
Therefore, the existence of a tool in these clients that guide
users towards the top-k most downloaded files is very benefi-
cial in terms of user convenience and traffic reduction. We
have proposed our algorithms by adding a new data structure
to chord protocol. Chord has been widely used as a routing
protocol in structured P2P networks. We validated our pro-
posed algorithms through simulation by using PlanetSim sim-
ulator and studied the effect of several parameters on the per-
formance of our algorithms. The results show very good per-
formance, in terms of communication cost and response time.

Keywords DHT - Chord protocol - File sharing system -
Top-k queries

>4 Sina Keshvadi
Keshvadi @pnu.ac.ir

Amir Masoud Rahmani
Rahmani @srbiau.ac.ir

Habib Rostami
Habib @pgu.ac.ir

Department of IT, Payame Noor University (PNU), Tehran, Iran

Department of Computer Engineering, Science and Research
Branch, Islamic Azad University, Tehran, Iran

Computer Engineering Department, School of Engineering, Persian
Gulf University, Bushehr, Iran

@ Springer

1 Introduction

Peer-to-Peer (P2P) networks came to enable users to share
limited resources in exchange with others and have access to
many others resources. P2P systems can be characterized as
distributed systems in which all the peers offering identical
responsibility, decentralized control, scalability, autonomy
and self-configuration [1, 2]. P2P networks are good platforms
for large-scale file sharing systems and is interested in both
academic and industry communities [3—5] (e.g. Napster,
Gnutella, Kazaa and BitTorrent). In these systems, user con-
nects to the network via P2P client, shares his/her files on
system and downloads desired files. To retrieve a file, client
generates a routing request, sends to other peers according to
the underlying routing algorithm and then receive the location
information of the requested file and downloads it finally. The
search mechanism in these systems is mainly keyword-based
[6], so, users may have to try different keywords to find the
desired file, where increase the network traffic. Therefore, the
existence of a tool in these clients that guide users towards the
top-k most downloaded files is very beneficial in terms of user
convenience and traffic reduction [7].

Some P2P networks use Distributed Hash Tables (DHTs)
to store and retrieve files on the network. Distributed Hash
Tables (DHTs), e.g. CAN, Chord, Tapestry and Pastry, pro-
vide an efficient solution for data location and lookup in
large-scale P2P systems. They all map a given key onto a peer
p using a hash function and can lookup p efficiently; usually in
O (log n) routing hops where n is the number of peers. In order
to suggest the k most downloaded files, we should determine
the total number of downloads of all copies of a file in the
system and such queries are referred as top-k queries. The
formal definition of a top-k query is as follows [8]:

Let Net be a P2P file-sharing network with N nodes. Let f;;
is a copy of file i hosted by node j and dl(f;) is number of

http://orcid.org/0000-0001-9491-7079
http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-015-0420-5&domain=pdf

Peer-to-Peer Netw. Appl. (2017) 10:208-215

209

downloads of file i form node j. Also, we define dI(f;) =
Y. j is a peer in Net dL(f7]). It means that dl(f;) is the total number
of downloads of various copies of file f; from different peers in
the Net. Each node in the Net keeps a list of the files it hosting,
which is sorted by their number of downloads. We define
score of file 7 as follows [8]:

N
Score(fi) = dI(fi) = Y _ dIf; (1)
J=1

We use the score function to rank the files. In the other
words, whenever a node requests the top-k list, in response
to the top-k query, a list includes k files names with the highest
scores is returned.

The rest of this paper is organized as follows. In part 2, we
explain related work in this area. In the part 3, we provide an
overview on chord protocol and explain our proposed data
storage mechanism on it. We present our proposed algorithms
in part 4. Next, in part 5, we report the performance evaluation
of our algorithms through simulation. Finally, we make a brief
concluding remark in part 6.

2 Related work

To the best of our knowledge, there is no efficient work that
gets Top-k most downloaded list in less than three phases over
large and dynamic file sharing systems. Many works are on
centralized or Client-Server systems that a complete survey of
these algorithms said in [9]. A naive distributed algorithm is
Fagin’s Algorithm (FA) [10] that gets all complete scores lists
of all files from all peers, compute the overall scores of any
file, and return the k top most downloaded files. This algo-
rithm is executed in O(m*n) (m files and n peers) and thus
uses a large number unnecessary accesses and it is inefficient
for wide-size P2P file sharing systems. The main algorithm
proposed so far to answering top-k queries over sorted lists is
the Threshold Algorithm (TA) [11]. The basic difference be-
tween TA and FA is its stopping process when the overall
score is greater than a threshold.

TA goes down the sorted lists in parallel, one position at a
time, and for each seen object, computes its total score. This
process continues until finding k objects whose overall scores
are greater than a threshold, which computed based on the
local scores of the objects at current position. TA needs huge
amount of interaction and communication and in worse case,
TA needs same cost with FA [11].

The TPUT (Three-Phase Uniform Threshold) [12] uses three
phases in order to resolve top-k queries in star topologies and it
is the first fixed-round algorithm designed to single-hop net-
works. The disadvantage of TPUT is that the threshold s is
uniform for all nodes, where it results in the unnecessary transfer
of many objects that are not in the final Top-k result. In [13] they

propose the Threshold Join Algorithm (TJA), use TPUT’s idea
in TA algorithm that utilizes a non-uniform threshold on the
attribute in order to minimize the transfer of data. [14] propose
a TA-Based algorithm to processing top-k queries over sorted
lists. They propose the best position algorithm (BPA), which the
key idea of BPA is that its stopping mechanism takes into ac-
count special seen positions in the lists, the best positions. In
[15], they proposed a location-aware system that returns ranked
objects that are near a query location and have textual descrip-
tions that match query keywords. They proposed the concept of
prestige-based relevance to capture both the textual relevance of
an object to a query and the effects of nearby objects. A review
of the spatial keyword querying functionality is in [16]. The
spatial keyword querying takes a user location and
user-supplied keywords as arguments and returns top web ob-
jects that are spatially and textually relevant to these arguments.

3 An overview on chord protocol and propose data
storage mechanism

In this section, we first describe the Chord protocol and then
we propose an efficient data storage mechanism based on this
protocol. Chord [17] is a distributed look up protocol that
provides a completely decentralized mechanism where allows
anode to look up an object in O(log N) by tracking only O(log
N) locations and constructs a logical ring within all N partic-
ipating nodes. It supports just one operation: given a key, it
maps the key onto a node responsible for them with consistent
hashing function, like SHA-1 [18], which has several desir-
able properties to assign an m-bit identifier to each node and
each key. A node’s identifier chosen by hashing the node’s IP
address, while key identifier produced by hashing the key.
Look up done with O(log N) messages, while join and leave
operations take no more than O(log N) with high probability.
For a more detailed introduction to Chord, please refer to [17]
and how consist hashing function work refer to [18].

Each node in the network keeps two lists of objects. The
first list contains the name and other conventional attributes of
a file that the node has shared as well as its number of down-
loads (dl). We call this list the OwnFile structure. The second
list, the indexed file structure, indexes the files assigned to the
node based on the chord protocol over DHT. The proposed
structure is shown in the Fig. 1.

Indexed File | diCount File 1 ID Set
diCount File 2 ID Set
diCount File N ID Set

Fig. 1 Indexed file structure

@ Springer

210

Peer-to-Peer Netw. Appl. (2017) 10:208-215

In this structure, the ID Set of file F; is the set of ad-
dresses of the nodes that have kept a copy of file F,. If
several copies of file F; are available in the network and
according to Chord’s hash function the node # is responsi-
ble for storing F;, then the node n stores F; and its ID Set,
which contains the addresses of all of the nodes that have
shared F;. Also, the node 7 stores the total number of down-
loads of the file F; in addition to the ID set. Therefore, the
system will no longer be in a state where the same copies of
a file are distributed across the system. In order to deter-
mine the number of downloads of a file F;, we just need to
find its responsible node (the node which keeps the ad-
dresses of the nodes hosting a copy of F) using the basic
chord lookup operation.

For example in Fig. 2, we have used our proposed data
structure to store a sample network with 4 nodes and 8 files
based on chord protocol.

4 Proposed algorithms to list the top-k most
downloaded files

In this section, we describe our proposed algorithms by using
data storage mechanism that mentioned in pervious part to
perform top-k query in the P2P file sharing system.

4.1 DHTTop algorithm

First, we must determine how a peer downloads a desired file
over the proposed structure. The download process is as
follow:

// peer n wants to download file f

key = n.Hash(f.filename);

N- = n.Find (key);

N, = N..getOwner (key);

n.request (N,, key);

if (n.download(key))

{
N..Increase (key , 1);
n.addOwnFile (f);

As soon as the node n decides to download file £; it hashes
the filename of f using a hash function on DHT and gets the
key. Then the DHT looks up the node Ny, which is responsi-
ble for addressing the key. N returns the address of one of the
nodes sharing f'in the system (which we call N) to node n.
Now, the node # requests the f from Ny. After downloading
the £, it notifies Ny to increase the dlcount of /by one unit.

When a node p requests the top-k list, it sends a broadcast
message to all its neighbors. We use the broadcasting algo-
rithm provided in [19], which presents an efficient mechanism
for performing a broadcast operation with minimal cost in log
(n) steps and exactly n-1 messages, where n is the number of
peers.

After sending a request, in the reverse path of broadcasting,
each peer receives a message from its children containing their
top-k list. Then the peer appends its own local top-k files to the
message and sends it to its parent node, all the way back to the
requesting peer (p). Finally, p performs the selection sort on all
of the received items and finds the k files with maximum
dlcounts.

4.2 RPDHT algorithm

In this section, we modify our naive algorithm, DHTTop, by
improving its performance in the reverse path of the broadcast.
When a peer receives the top-k lists form its children, it uses
selection sort to combine the received lists with its own local
top-k list, and only sends the best k files to its parent. At the
end, the root receives the final top-k list from its children. On
the reverse path of top-k request, the message size is greatly
reduced, because the size of each message is fixed and equal
to k filenames. Therefore, using this method leads to a signif-
icant reduction in the network traffic and thereby reduces the
response time too.

4.3 At-based DHT algorithm

Top-k algorithms from one perspective can be divided into
two categories: exact answers and approximate answers. In
this section, we propose an approximation algorithm with
good accuracy. As soon as a peer receives the top-k list, we

Fig. 2 Implement a simple file
sharing system on chord protocol

N6 (User3)

Index | 13 | F6 | N2

File

5 | F5| NO

e Peerl dl | Peer3 dl
Fle | 26| F7|NO|N2| N4| N6 Hosted | Fi|7 | Hosted | F4| 12
11 | F8 | NO | N4 File Fg | 5 File F; |8
NO (User1) Fs |5 F7 |7
F7 | 4
N2 (User4d)
Ir:;l':x 14 | F1 | NO | N2| | Peer2 dl | Peer4 dl
s | F2| Na Hosted Fs | 13 | Hosted F2 |8
File F1| 7 | File Fs | 6
N4 (User2) Fr |4 Fs]6
F7 | 4
Index | 14 | F3 | N4 | N6
12 | F4 | N6

@ Springer

Peer-to-Peer Netw. Appl. (2017) 10:208-215

211

Fig. 3 Implement Fig. 2 over K=3
chord protocol by DHTNodeTop
technique Index | 16 | F7 | NO | N2 | N4 | N6 ":e" 16 | F7 | NO | N2
e
File | 14 | F3 | N4 | N6 11 | F8 | NO | N4
14 | F1 | NO | N2 NO (User1)
NTop (User5S) N2 (Userd)
N6 (User3) ";‘I’I‘-"‘ 14 | F1 | No | N2
e
Index 13 F6 | N2 8 F2 | N4
File
S | F5| NO
N4 (User2)
Index | 14 | £3 | N4 | N6
File
12 | F4 | N6

assign an expiration time AT to the list, which indicates that
the list is valid for the time interval AT. When a peer broad-
casts its top-k request, if a peer in the broadcast path has a
top-k list that has not expired yet, instead of sending requests
to its neighbors, it returns the existing top-k list and its expi-
ration time AT to its parent. In addition, if a peer receives
several top-k lists with different ATs, it chooses the most re-
cent one and if the received list is newer, sets it as its own local
top-k list and returns it to its parent. We have studied the
results of this approach in Section 5.6.

4.4 DHTTopNode algorithm

We use a super peer called TopNode to continuously keep the
top-k list in the file sharing system. For our goals, TopNode
must be constructed form peers that are relatively powerful
and stable. The power of a peer can measure by its bandwidth,
memory and CPU speed. Stability can measure by the average
length of continuous time that a peer is available. The pro-
posed mechanism to file downloading in DHTTopNode algo-
rithm is as follows:

// n wants downloads f

key = n.Hash (f.filename);

N. = n.Find (key);

N, = N..getOwner (key);

n.request (N,, key);

If (n.download (key) == true)
N..Increase (key, 1);
n.addOownFile (f);
n.SendMessage(TopNode, f, dlCount);

//Top-node process after receive a download message
if(top-kList.contain(f))
top-kList.Replace(f, f, dlCount);
else
if (top-kList.Length() < k)

else If(top-kList[k].dlCount<f.d1lCount)

top-kList.append(f, dlCount);
top-kList.sort();

top-kList.Replace(top-kList[k], f, dlCount);

When peer # looks up a file fin the system and downloads
it, N (the node responsible for indexing f in the chord)

increases the dlcount of file f'and sends a message containing
the name of file f'and its new dlcount value to TopNode. When

Table 1 Default settings for experimental parameters

Parameter Default values Parameter Default values

Number of Shared Files 3500 Download Time Between 10 and 100 s

Default K 10 Query arrival rate 50 queries per seconds from 1000 peer

Average Own File for each Peer 20 Default At 40 s

Downloaded File Between 20 and 30 Bandwidth dataset King data set
http://pdos.csail.mit.edu/p2psim/kingdata

User and their Files dataset Movie Lens Latency dataset MIT data set

Average Filename Size 30 byte Default Network Size 1000 Peer

@ Springer

http://pdos.csail.mit.edu/p2psim/kingdata

212

Peer-to-Peer Netw. Appl. (2017) 10:208-215

1500 T T

—e— sum of DHTTop

@
@

~—#— sum of RPDHT

@
S

—a— sum of T-Based
sum of DHTTopNode
—o— sumof TA

N
@

10001~

—&— sum of FA

Response Time (sec)

500

Communication Cost (kBytes)

—&— sum of DHTTop
~—*—sum of RPDHT
—#—sum of T-Based

sum of DHTTopNode
—&—sum of TA

—©—sum of FA

~ h
3000 3500 4000 6000

Number of Peers

o X
1000 1500 2000 2500 4500 5000 5500

Fig. 4 Effect of scalability on communication cost and response time

TopNode receives the message, it searches the top-kList for f°
and if'it is found, replaces the old value of /s dlcount with the
new one and sorts the top-kList. If the top-kList does not
contain f; it checks the size of top-kList and if it is lower than
k, adds f'to the end of the top-kList. Otherwise, TopNode
compares the dlcount of fwith the last dlcount in the top-kList.
If it is greater, it replaces the kth item in the top-kList with 1’

3000 3500 4000
Number of Peers

1500 2000 2500 4500 5000 5500 6000

To evaluate the performance of our algorithms, we measure

the following metrics. 1) Response time, the time elapsed
between the delivery of top-k request to DHT and the show
top-k list; 2) Communication cost, the total number of bytes,
where transferred over the network for executing algorithms,
look-up and sorting Top-k list.

In order evaluate our works, we simulate, tested and com-

and sorts the top-kList using a bottom-up algorithm.

In the proposed structure, when a peer requests the top-k
list or a new nodes joins the system, it can get the top-k list
from the TopNode directly. We have stored the network of
Fig. 2 in Fig. 3, using this mechanism.

In next section, we evaluate our algorithms through
simulation.

pared two most used algorithms i.e. FA and TA with four
versions of our algorithms.

5.1 Scalability

We investigate the scalability on response time and commu-
nication cost of our algorithms. As we seen in Fig. 4,
DHTopNode has minimum response time and communication
cost against others. Next, RPDHT and DHTTop algorithms
are better than TA where return top-k list in less time and cost
toward TA. It must be noted that the length of the messages
gets larger and larger with each hop of the reverse path of
DHTTop. In the At-based method, increasing the network size
will increase the chance of receiving fresh list from neighbors.
Hence, increasing the number of nodes improves the perfor-
mance. Finally, basic algorithm i.e. Fagin-based method is
worse time rather than other algorithms.

5 Performance evaluation and simulation setup

We implemented and evaluated our algorithms using by
PlanetSim simulator [20]. PlanetSim is an open source and
java based framework that implement and evaluate overlay
networks such as Chord and Symphony. Our default settings
and network parameters are shown in Table 1.

3000 T

2500

N
=}
S
=}

1500

1000

Communication Cost (kBytes)

500

—®—sum of DHTTop
~*—sum of RPDHT
—*—sum of T-Based

sum of DHTTopNode
—0—sum of TA

9 sum of FA

=}

—&—sum of DHTTop
~*—sum of RPDHT
—#— sum of T-Based

sum of DHTTopNode
—o—sum of TA

——sum of FA

10 20 30 40 80

Fig. 5 Effect of K on communication cost and response time

@ Springer

Peer-to-Peer Netw. Appl. (2017) 10:208-215

213

‘ —e—sum of DHTTop ~*sum of RPDHT —— sum of T-Based

140 T T T T T : :

L
2
E‘ 1001 1
=
%
g go-]
S 8
=
ol
§ e0- 1
£
=
£
£ 40¢
=3
]

20 1
o i | | . | . |
100 150 200 250 300 350 400 450 500

Query Request Rate (Per Mins)

Fig. 6 Effect request rate on communication cost and response time

5.2 The effect of k

Aswe seen in Fig. 5, by increasing k, TA and FA is required to
more additional transition to find the top-k list. In addition,
when the k is large, e.g. more than 100, the performance of the
DHTTop greatly reduced against the RPDHT. As we can see,
in the DHTTopNode method the response time and commu-
nication cost remains uniform while increasing k, because it
gets the top-k list directly from TopNode. The performance of
At-based algorithm is better than RPDHT but by increasing k,
its accuracy may be reduced which we have studied this issue
in Section 5.5.

5.3 Effect of arrival request rate

We have increased the arrival rate of top-k requests from 100
to 500 per minute in a network of 1000 peers. As it can be seen
in Fig. 6, the growth rate of network traffic and response time
of requests are uniform in both RPDHT and DHTTop algo-
rithms. This is also true about TA and FA. However, this
change has quite different effects on the AT-based algorithm.
With the increase of requests rate, the probability of having a

150

—®—sum of DHTTop
% sum of RPDHT
—4— sum of T-Based

sum of DHTTopNode
—&—sum of TA
—©—sum of FA

15}
=)
T

Communication Cost (kBytes)
(4]
o
T

.

Total Own File

sum of DHTTopNode ——sum of TA —¢—sum of FA | —®—sum of DHTTop —*—sum of RPDHT —%— sum of T-Based
4

sum of DHTTopNode —®—sum of TA —— sum of FA

0 5 10 15 20 25 30 35 40 45 50

T T T T T T

Response Time (sec)

0 ! ! I L I I 1
100 150 200 250 300 350 400 450 500
Query Request Rate (Per Mins)

recent top-k list also increases and the time and traffic cost of
each request decreases. In the DHTTopNode algorithm, the
volume of messages and the number of input/output messages
of the TopNode and its adjacent neighbors increase with the
increase of requests rate, so TopNode may suffer from bottle-
neck. In this case, we can use some replicas across networks to
balance the load.

5.4 The effect of number of shared files

As mentioned before, each peer in the system has a folder for
keeping and sharing its OwnFiles in the system. In addition, most
peers share the downloaded file over the system. So, the same
copies of a file is distributed across the system. Assuming that the
variety of files in the system is constant, we have changed the
number of shared files and studied its effect on the network.

As we can see in Fig. 7, increasing the number of shared
files has little effect on the performance of our main algo-
rithms. In the TA, by increasing the number of shared files,
the files will be distributed across more nodes in the system
and therefore, more passes and time are required to find each
element of Top-k list.

—®—sum of DHTTop
~—*sum of RPDHT
—*— sum of T-Based

sum of DHTTopNode
—&—sum of TA
—©—sum of FA

»
o
T

IS
T

w
o
T

w
T

Response Time (sec)
N
N (52
T T

o
T

0.5[

0 5 10 15 20 25 30 35 40 45 50
Total Own Files

Fig. 7 Effect of number of shared files on communication cost and response time

@ Springer

214

Peer-to-Peer Netw. Appl. (2017) 10:208-215

Fig. 8 Accuracy of AT-based 10
algorithm o5

751

Accuracy

701

651

60

I I | I 1 1 1 |

20 30

5.5 Accuracy of the At-based algorithm

Here, we want to study the accuracy of the At-based algorithm
in difference AT. First, we should define the accuracy of the
results. Given a top-k request Q, let U be the exact set of k top
results owned by the peers that received Q, U’ be the set of
top-k results which are returned to the requested peer via
At-based Algorithm. We denote the accuracy of results by
acq, and define it as:

‘UﬂU’
|U|

acg = (2)

We use default setting in the network as mentioned in Ta-
ble 1. As is seen in Fig. 8, accuracy of the top-k for small AT
i.e. 20 5 is 99.7 %. For longerATs, accuracy decrease because
downloaded times of files and dlCount change continuously
in the system.

6 Conclusion and future work

In this paper, we addressed the problem of top-k most
popular file in P2P file sharing systems. We first proposed
a new data storage mechanism in DHTs, which provides a
good support for top-k queries. Then, we proposed four
efficient algorithms for ranking top-k most downloaded
files in P2P file sharing system. Our naive algorithm,
DHTTop, broadcasts the top-k query over chord-protocol
and receives top-k list from its children. Then, RPDHT
algorithm, modify our naive algorithm by improving its
performance in the reverse path of the broadcast. Third,
we propose an approximation algorithm with good accu-
racy named At-Based Algorithm. It assigns an expiration

@ Springer

40 50 60 70 80 90 100 110 120
Delta t

time, AT, to the each top-k list. Finally, we use a super
peer called TopNode to keep continuously the top-k list in
the file sharing system. Our algorithms is not TA-style, it
is much more general since it supports a large set of any
scoring functions. We validated our algorithm through
simulation by using PlanetSim simulator and studied the
effect of several parameters on the performance of our
algorithms. The results show very good performance, in
terms of communication cost and response time. As we
see, DHT Top algorithm has the best performance rather than
others.

We intend to perform other top-k query functions in the
DHTs by using our proposed data storage mechanism. We
also intend to implement a recommender system to be added
to Chord-based P2P file sharing system and towards clients to
desired files.

Compliance with ethical standards

Ethical statement “If you do not have integrity, you have nothing. You
cannot buy it. You can have all the money in the world, but if you are not a
moral or ethical person, you really have nothing.” I agree with this view.
As a researcher, I abide by some basic personal ethics that help me be-
come a better person everywhere and every day. I have immense respect
for my professors, for other researchers, and for readers. Integrity and
honesty are two values which I promise to abide by in every situation. |
will never engage in plagiarism, cheat, or break any rules, which might
result in someone else getting hurt. I promise to stand up against all that is
wrong, and will always support nothing but the truth.

References

1. Felber P, Kropf P, Schiller E, Serbu S (2014) Survey on load
balancing in peer-to-peer distributed hash tables. IEEE Commun
Surv Tutorials 16(1):473-492

Peer-to-Peer Netw. Appl. (2017) 10:208-215

215

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

R. Bolla, R. Gaeta, A. Magnetto, M. Sciuto, M. Sereno. A measure-
ment study supporting P2P file-sharing community models.
Comput Netw, vol. 53, Issue 4, pp. 485-500, 2009.

Li C, Yu B, Sycara K (2009) An incentive mechanism for message
relaying in unstructured peer-to-peer systems. Electron Commer
Res Appl 8:315-326

Xu Z, He X, Bhuyan L (2006) Efficient file sharing strategy in DHT
based P2P systems. Comput Commun 29:1243-1259

Zhan Su, Anthony K. H. Tung, Zhenjie Zhang. Supporting top-K
item exchange recommendations in large online communities,
EDBT 2012, March 26-30, 2012, Berlin, Germany.

Rostami H, Habibi J, Livani E (2008) Semantic routing of search
queries in p2p networks. J Parallel Distrib Comput 68(12):1590—
1602

Ekstrand MD, Riedl JT, Konstan JA (2010) Collaborative filtering
recommender systems. Foundations and Trends in Human-
Computer Interaction 4(2):81-173

B. Sanyal, P. Gupta, S. Majumder. Top-K range-aggregate queries
on categorical data, in Emerging Trends and Applications in
Computer Science (NCETACS), 2012.

Ilyas IF, Beskales G, Soliman MA (2008) A survey of top-k query
processing techniques in relational database systems. ACM
Comput Surv 40

R. Fagin. Combining fuzzy information from multiple systems, in
Proceedings of the 15th ACM Symposium on Principles of
Database Systems (PODS), pp. 83-99 1999.

Fagin R, Lotem J, Naor M (2003) Optimal aggregation algorithms
for middleware. J] Comput Syst Sci 66(4):614-656

Pei Cao, Zhe Wang. Efficient top-K Query Calculation in
Distributed Networks, in Proceedings of the Twenty-third Annual
ACM Symposium on Principles of Distributed Computing, pp.
206-215, Canada, 2004.

Demetrios Zeinalipour-Yazti et. al. Finding the K highest-ranked
answers in a distributed network. Comput Netw, vol. 53, pp.
1431-1449, 20009.

Akbarinia R, Pacitti E, Valduriez P (2011) Best position algorithms
for efficient top-k query processing. Inf Syst 36:973-989

Xin Cao, Gao Cong, Christian S. Jensen. Retrieving Top-k Prestige-
Based Relevant Spatial Web Objects, Proceedings of the VLDB
Endowment, Vol. 3, No. 1,, September 13—17, 2010, Singapore.
Xin Cao, Lisi Chen, Gao Cong, Christian S. Jensen, Qiang Qu,
Anders Skovsgaard, Dingming Wu, Man Lung Yiu. Spatial key-
word querying, LNCS 7532, pp. 16-29, Springer-Verlag Berlin
Heidelberg 2012.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan. Chord: A scalable peer-topeer lookup service for
internet applications, in SIGCOMM, 2001.

FIPS 180-1. Secure hash standard, in Technical report, US
Department of Commerce/NIST, http://www.itLnist.gov/fipspubs/
fip180-1.htm, April 1995.

El-Ansary S, Alima LO, Brand P, Haridi S (2003) Efficient broad-
cast in structured P2P networks. IPTPS:304-314

P. Garcia, et al. Planetsim: A new overlay network simulation
framework, in In. Proc. of ASE, 2004.

Sina Keshvadi received his M.S.
degree in computer science from
University of Branch and Research
of Ahvaz in Iran, in 2010. He is
now faculty member of the Infor-
mation Technology Department,
PNU University of Iran. His cur-
rent research interests are in the ar-
ea of distributed computing, P2P
systems and cloud computing.
Email: Keshvadi@pnu.ac.ir

Amir Masoud Rahmani re-
ceived his BS in Computer Engi-
neering from Amir Kabir Univer-
sity, Tehran, in 1996, the MS in
Computer Engineering from Sha-
rif University of Technology, Teh-
ran, in 1998 and the PhD degree
in Computer Engineering from
TAU University, Tehran, in 2005.
Currently, he is an Associate Pro-
fessor in the Department of Com-
puter Engineering at the IAU Uni-
versity. He is the author/co-author
of more than 120 publications in
technical journals and confer-

ences. His research interests are in the areas of distributed systems, ad
hoc and wireless sensor networks and evolutionary computing.

Habib Rostami received his B.
Sc, M.Sc and Ph.D in computer
engineering from sharif university
of technology. Now, he is an as-
sistant professor of computer en-
gineering at Persian Gulf Univer-
sity of Bushehr, Iran. His interest
includes P2P networks, Data
Mining and soft computing.

@ Springer

http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://www.itl.nist.gov/fipspubs/fip180-1.htm

	Recommend top-k most downloaded files in the chord-based P2P file-sharing system
	Abstract
	Introduction
	Related work
	An overview on chord protocol and propose data storage mechanism
	Proposed algorithms to list the top-k most downloaded files
	DHTTop algorithm
	RPDHT algorithm
	∆t-based DHT algorithm
	DHTTopNode algorithm

	Performance evaluation and simulation setup
	Scalability
	The effect of k
	Effect of arrival request rate
	The effect of number of shared files
	Accuracy of the ∆t-based algorithm

	Conclusion and future work
	References

