
1

OpenData: A Framework to Train and Deploy ML
Solutions in Wide-Area Networks

Sina Keshvadi, Shuihai Hu, Geng Li, Yi Lian

Abstract—Data-driven solutions hold significant promise for
improving network protocols and services in wide area networks.
However, their practical adoption in production networks has
been limited. This paper investigates the potential of leveraging
network data itself to enhance the effectiveness of data-driven so-
lutions. We evaluate a Quality of Service (QoS) forecasting model
trained on directly collected network data to demonstrate the
advantages of harnessing networking data for machine learning
purposes. Our results reveal that training the model with network
data effectively addresses the challenges of Data Drift. We also
acknowledge the limitations of designing a generic framework
to support all problem domains. To overcome this challenge, we
propose a comprehensive set of potential solutions that leverage
network data for machine learning (ML) applications.

Index Terms—Data-Driven Solutions, Wide Area Networks,
Network Data

I. INTRODUCTION

Machine Learning (ML) has emerged as the method of
choice for developing practical software for computer vision,
speech recognition, natural language processing, robot control,
etc. The success of ML applications in addressing these
problems has motivated researchers to adapt ML as a tool
for solving complex problems of modern computer networks.
Though innovative in recently proposed data-driven solutions,
these proposals suffer from a consistent challenge: the risk and
difficulty of deploying ML models in a production network [1].

The main focus in data-driven solutions is around the data,
where the behavior of a ML system is dependent on the
qualities of its input features. Building, training, and testing
ML models to address complex networking problems, such
as congestion control and traffic engineering, often requires
a large amount of data. In current practices, ML developers
mainly acquire training data from datasets or collect synthetic
data from network traffic generators, simulators, or emulators,
which none of them are able to accurately represent the
behavior of a target environment that a model must operate
in.

As networks are highly connected and filled with dependen-
cies, small changes in one part of the network can result in
large performance effects in others. Due to the heterogeneity of
network functionalities and services, it is not easy to migrate a
data-driven solution from one network to another network [2].
Data-driven solutions need to be trained in the target network
to learn complex properties about that network and make
optimized decisions [3]. The end result is that, often, the only
way to ascertain the true performance of a data-driven solution
at a production network is to build and train its model with
proper data collected from the same network that the model
is supposed to operate in [2].

Unfortunately, setting up a data collection and measurement
framework to capture data and the real effects of a specific
network on a model is prohibitively challenging and expensive.
Existing network infrastructures lack efficient mechanisms to
collect and process sufficient high-quality data to feed and
train a ML model.

With limited existing data services, developing standard pro-
tocols and mechanisms to facilitate training and maintaining
a data-driven solution in a network has become crucial. In
contrast to today’s data-driven deployments that train models
on synthetic data, we propose OpenData, a generic framework
to collect and process network data on the fly, which enables
a data-driven solution to train and tune its model in the target
network. To demonstrate the benefits of using the OpenData
framework, we study the effect of using online networking
data to train a QoS forecasting model in our worldwide
overlay network. Our primary results show that online training
improves a model’s accuracy, and it partially addresses data
drift and data scarcity problems.

However, by conducting a literature review and carefully
investigating different ML paradigms, networking scenarios,
and current data-driven solutions, we realize that designing
a practical general framework that is capable of providing
online data for all types of data-driven applications is likely
impossible. Data collection and processing for data-driven
applications is highly domain-specific and a case-by-case data
collection approach is required. In addition, we observe that
most current practices collect internal data and do not need an
external framework to acquire the required data. We propose
possible directions to partially address the main challenges
while providing the main benefits to train ML models in a
network.

The rest of this paper is organized as follows. Section II
provides background and motivation on networking data-
driven solutions. Section III conceptualizes the OpenData
framework and our primary observations of using online data
to train a QoS forecasting model. Section IV summarizes
our exploration of a general framework for online training.
Section V provides possible directions to address the main
designing challenges. Finally, Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Current Practice of Building ML Models for Networking

ML starts with data. In general, networking data collection
can be achieved in two phases: offline and online. Offline
data is gathered from a large amount of historical data and
online data is the real-time network data. A ML system trains

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2023.3320929

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Thompson Rivers University Library. Downloaded on October 09,2023 at 18:09:48 UTC from IEEE Xplore. Restrictions apply.

2

a model to gradually learn the relationships between previously
observed data and recognize certain types of patterns to predict
unseen data. Data-driven algorithms demand large amounts of
high-quality data to be effectively trained. There are three main
streams to collect massive amounts of networking data: using
traffic generators on available datasets, network simulators, or
network emulators. The main motivation to generate synthetic
training data comes from the difficulties and challenges in
collecting training data from a real production network, such
as:

• Obtaining real-world data traces is difficult due to the
critical and private nature of network traffic.

• The process of traffic capturing and data collection is
often expensive, complicated, and time-consuming.

• Acquiring network data comes at the cost of increased
monitoring overhead.

• Data collection for learning may disrupt applications’
performance and users’ experience.

After collecting proper training data, there are also internal
processes to deal with the preparation of the data such as nor-
malization so that a model can learn as effectively as possible.
During the training process, the model’s hyperparameters are
iteratively changed until the hyperparameters with the lowest
possible loss are discovered. Historically, the process of hyper-
parameter optimization may have been performed through trial
and error, but now, optimization algorithms such as Bayesian
optimization are used to rapidly assess hyperparameter config-
uration to identify the most effective settings. The automated
optimization process enables a network controller such as
an Software-Defined Networking (SDN) controller to offer
optimization services to ML applications [4]. After training
a model with a proper amount of data, it will be deployed
in a production environment. A deployed model will bring
much more value if it’s trained with data that fully capture
the production environment. Poor training data, on the other
hand, can lead to ineffective models [5].

B. Benefits of Using Online Networking Data

Computer network research has long depended on a number
of techniques from simulation, emulation, and small-scale
laboratory experiments to large-scale testbeds such as Emulab
and PlanetLab. While these tools all have a role, experience
has shown that networks are inevitably more diverse and
variable than we anticipate. However, even with data collected
from real networks, the differences in the network structures
and architectures can lead to inaccuracy in training a model
with data from other networks. For instance, the enterprise
network of one organization is diverse and disparate from
another. Therefore, the patterns learned from one network
may not be applicable to another network. Therefore, only
building and training a model with proper data collected from
the target network can reveal the true performance of a data-
driven solution. The main benefits of using online networking
data are:

• It represents the real nature of a network. The randomness
in simulated data may bring difficulties to train ML
models, in particular Reinforcement Learning (RL), in

which the randomness in data brings variance and noise
to rewards.

• It captures the full dimensionality of each network. Each
network has several dependencies and features which is
not possible to capture in other networks, simulators, and
emulators.

• It provides the dynamic pattern of a particular network
and its continuous growth in the number of applications
and the kinds of devices connected to it.

• Most emulated or prototype networks use a very simple
network topology. However, a model must learn using
the traffic generated over the target network topology in-
cluding a collection of links, LANs, routers, middleboxes,
etc.

C. The Main Challenges of Online Training

After deploying a trained model in a production network, a
practical system must be able to dynamically and periodically
retrain on new data. Although technological advances in
networking, such as Software-Defined Networking (SDN) or
programmable switches, have improved the applicability of
deploying a ML model to collect online data in a network, due
to the lack of a standard ML-friendly framework or protocols,
applying real-time data collection and online training involves
solving a number of new and nontrivial challenges:

• Labeling. Labeling presents two significant challenges:
the difficulty of labeling data in real-time and the time
disparity between features and labels. To illustrate this,
let us consider a scenario involving a CDN cache man-
agement system, where an object is initially requested
but remains unaccessed for a span of five hours before
being accessed again. The acquisition of training data for
this particular problem becomes inherently complex due
to the substantial temporal gap between the occurrence
of features and the corresponding labeling. During this
extended five-hour period, the object’s features persist and
undergo continuous variations. However, retaining tempo-
ral information for every unlabeled object throughout this
entire duration would impose excessive memory overhead
and make it impractical in practice.

• Data scarcity. Data-driven systems must consider a large
amounts of dynamic information to make decisions. How-
ever, testing on individual users requires each user to
generate a tremendous number of connections but a user
may generate little data (e.g. only visit a Website a few
times).

• Computational, memory, and bandwidth overhead. While
more data features can improve training quality, the
allocation of resources for data collection can hinder the
core functionality of the system. Often times the data-
driven applications have to mitigate the processing from
client devices to a server-side system which increases the
client’s bandwidth and power usage. In addition, gener-
ating data for learning requires testing configurations and
may disrupt the user’s performance.

• Scalability. Collecting massive amounts of data from
distributed clients and processing that data on a large

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2023.3320929

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Thompson Rivers University Library. Downloaded on October 09,2023 at 18:09:48 UTC from IEEE Xplore. Restrictions apply.

3

parallel system is a complex process. This extensive and
tedious task can cause difficulty in deploying a scalable
data-driven application in a dynamic production network.

III. OPENDATA FRAMEWORK

In this section, we present OpenData, a comprehensive
framework designed to facilitate data collection and processing
for online training and tuning of data-driven solutions in a
network. OpenData provides protocols and APIs that enable
data-driven solutions to seamlessly collect and process online
data features from a production network.

A. Overview

Figure 1 provides a conceptual visualization of the Open-
Data framework. It comprises three layers: the Application
Layer, the Data Layer, and the Infrastructure Layer. At the
heart of the framework, the OpenData controller resides in the
Data Layer, acting as a strategic control point. It leverages data
collection interfaces in the Infrastructure Layer to gather data
from the network and offers various services, including data
collection, data processing, and data aggregation, through its
APIs. The Application Layer encompasses diverse application
services that cater to users’ requirements. A machine learning
(ML) solution deployed at the Application Layer can effort-
lessly collect real-time data from the network to train, re-train,
and tune its model hyperparameters, ensuring adaptability to
network changes. By abstracting away the complexities of
data collection and processing in the network, the OpenData
framework empowers model developers to focus on model
development, eliminating the need for them to directly deal
with the intricacies of data collection and processing within
the network.

To address the challenges outlined in previous section and
showcase the potential of OpenData, we highlight its key
features:

• Data Drift and Data Scarcity: OpenData overcomes the
limitations of relying on synthetic datasets or embedded
data collection mechanisms by providing direct access
to live network data. By collecting data features from
the production network in real-time, data-driven solutions
can continually train and update their models to adapt to
changing network conditions. This specially addresses the
challenge of data drift and enables models to stay relevant
and accurate over time. Moreover, OpenData enhances
data availability by offering a centralized framework
for data collection and aggregation which it mitigates
the issue of data scarcity and facilitates the utilization
of diverse and comprehensive datasets for training and
tuning.

• Computational Efficiency: The OpenData framework
streamlines data collection and processing, optimizing
computational efficiency in data-driven applications. By
leveraging the centralized OpenData controller and its
data collection interfaces, data-driven solutions can ef-
ficiently retrieve and process network data without incur-
ring unnecessary overhead. This reduces the computa-
tional burden on individual applications and ensures that

computational resources are efficiently utilized for model
training and inference.

• Scalability and Responsiveness: OpenData addresses
the architectural challenges of scalability and responsive-
ness by providing efficient protocols and APIs. These en-
able seamless communication and coordination between
the Application Layer, Data Layer, and Infrastructure
Layer, ensuring high scalability and responsiveness of
the overall system. By leveraging OpenData’s scalable
design, data-driven solutions can effectively handle large-
scale data collection and processing tasks in real-time
network environments.

Here, we first demonstrate the benefits of using online data
to train a model in a production network before investigating
the data demand by networking applications in Section IV.

Fig. 1: OpenData Framework

IV. OUR EXPLORATION OF A GENERAL FRAMEWORK FOR
ONLINE TRAINING

Data-driven solutions start with data and the main focus is
around the data. A data-driven application must continuously
test, verify, and monitor the input data since the behavior of a
model is dependent on input data features [6]. As we observed
in the previous section, the quality of networking data used
to train a model can significantly affect its performance in
a production network. To build a general framework that is
able to collect proper data for various networking data-driven
solutions, the data demands by these applications must be
identified. The networking data can be represented as local
or network-wide data. The local representation of networking
data is necessary to drive local actions such as congestion
control or adaptive bitrate algorithms, while the network-wide
data is required for network-wide solutions such as routing and
traffic classification. In this section, we conduct a literature
review to identify the common data demands for training and
testing data-driven solutions in wide-area networks.

A. Data features required by different domains is diverse

Table I represents the data demand for congestion control,
video streaming, resource management, and traffic engineer-

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2023.3320929

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Thompson Rivers University Library. Downloaded on October 09,2023 at 18:09:48 UTC from IEEE Xplore. Restrictions apply.

4

TABLE I: Networking Data Demand

Local Wide-area

Domain Solution Model Networking Data Demand Domain Solution Model Networking Data Demand

Congestion Control

Remy SL ACK packets
RTT

Resource Management
(SDN Network) NFVdeep DRL

Network topology
Links bandwidth
Links latency

PCC Vivace SL
Throughput
RTT
Loss rate

Resource Management
(Cloud Network) Decima RL Network topology

Aurora RL
Throughput
Latency
Loss rate

Resource Management
(General) DeepRM [7] RL Estimated bandwidth

Orca RL

ACK packets
Congestion Window
Throughput
Loss rate
Delay

Flow Scheduler AuTO DRL Flows 5-tuples
Flows throughput

DRL-CC DRL

Congestion Window
Throughput
Goodput
RTT
Jitter

DeepPacket DL (CNN)
Flows duration
Flows throughout
Inter-flows statistics

Video Streaming

Pensieve RL Throughput
Routing

Learning to Route RL
Flows 5-tuple
Flows throughout
Inter-flows statistics

Swift DRL Throughput RouteNet SL (GNN)

Network topology
Links latency
Flow Delay
Flow Jitter

ABRL RL Estimated bandwidth DQRC RL Links latency
Packet delivery time

LiveNAS [8] DNN Estimated bandwidth
Packet/Flow Classification

NeuroCuts [9] DRL Flows 5-tuples

Resource Management
(CDN Network)

LRB SL - NuevoMatch DL (NN) Flows 5-tuples

LFO RL - ODCNN DL (CNN)
Flows 5-tuples
Flows statistics
Inter-flows statistics

ing. In the following paragraphs, we briefly highlight the
common demands for each domain.

Congestion Control. Several heuristic techniques have
been proposed to address congestion control, including Vegas,
NewReno, FAST TCP, CUBIC, and BBR. These mechanisms
usually apply end-to-end techniques to tune the congestion
window (cwnd) as a mean to achieve better performance.
The main limitation of traditional approaches is the unreal-
istic assumptions regarding network conditions. This is where
applying machine learning techniques becomes useful. As we
see in Table I, the common networking data demand for
congestion control includes throughput, loss rate, delay (or
RTT), ACK messages, and cwnd.

Video Streaming. Considering the importance of users’
quality of experience, the dynamic nature of networks, and
the complex nature of optimization objectives (including re-
buffering ratio, average bitrate, number of quality changes,
startup delay, etc.), many new data-driven solutions have been
explored to improve adaptive video streaming. As seen in
Table I, the only network-related feature that a data-driven
ABR solution needs to perceive from the underlying network is
throughput or an estimation of available bandwidth. The client-
side ABR agent estimates the bandwidth using the download
time of the last video chunk data. Unlike traditional ABR
algorithms, data-driven solutions use server-side techniques
which mitigate the computational and memory overheads from
client devices to the server-side.

Resource Management. Resource management problems

are ubiquitous across computer systems and networks. The
majority of these problems are solved today using heuristic
solutions that could become insufficient and unreliable if
an aspect of the problem changes [7]. Data-driven resource
management solutions have been proposed to provide higher
scalability, availability, and cost-efficiency of resources. These
solutions mainly map resource demands to resources, in order
to meet resource management optimization objectives such
as improving resource utilization, reducing average response
time, and enhancing fairness. From Table I, it can be seen
that the data demand depends on the scope of a resource
management problem, which could be within a CDN, SDN,
cloud network, or across geo-distributed cloud data centers.
While a data-driven CDN manager normally does not perceive
any networking data to improve its hit rate, the most common
data demand within other domains is network-wide data
which includes underlying network topology, links latency, and
throughput between every two nodes in the network.

Traffic Engineering. Traffic Engineering (TE) enables a
network operator to steer traffic through a path that may result
in more efficient use of network resources [10]. The main chal-
lenge of TE involves the ever-increasing dynamics of traffic
loads, network characteristics, and multi-faceted optimization
goals which are difficult to be interpreted as a simple formula
for handcrafted heuristics to optimize [6]. As summarized in
Table I, data-driven TE solutions need aggregate information
for each network flow, such as flow throughput, average packet
loss, average delay, number of packets, etc. A flow is typically

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2023.3320929

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Thompson Rivers University Library. Downloaded on October 09,2023 at 18:09:48 UTC from IEEE Xplore. Restrictions apply.

5

defined as all the packets that share the 5 tuples of the same
flow (source and destination IP addresses, port numbers, and
protocol) and have an inter-arrival time within a specific time
slot. TE algorithms also demand network-wide information
such as network topology, nodes’ throughput, and links’ load
and latency. Table I shows more uses of deep learning and
neural networks in TE algorithms.

B. The overhead for an external tool to collect required data

In the previous section, we aimed to understand the net-
working data demands by data-driven applications. Our main
observations are as follows:

1) There are only a few common data features across
different domains of solutions. This indicates that a
case-by-case domain-specific data collection approach
is required for each problem domain.

2) Most training data is collected by a solution internally
and can be more difficult to be obtained by external
tools. For example, video streaming collects most data
internally from the video player, and a congestion con-
trol mechanism collects data from the transport protocol.
This indicates that most ML applications are able to
collect internal data and there is no need to collect data
from an external framework.

3) RL is widely adopted. This highlights the fact that due
to the lack of labeling and the time disparity between
observed features and the label, RL approaches are more
desirable in networking scenarios [11]. In addition, by
using a RL learning approach, the quality of training
data for building a model is not as critical compared
to a supervised learning model. An RL solution can
learn in the environment and rectify its decision-making
algorithm after being deployed. It also does not require
the generation of a label for features since the reward
function provides feedback on each given action. How-
ever, studies show that pre-training a (D)RL learning
model on poor quality data can result in a confounded
model in a real environment. As well, it increases the
time a model consumes to learn to perform better in the
earlier stages of deployment.

Taken together, these observations indicate that while indi-
vidual problems need a better data collection and processing
mechanism, designing a generic framework to support all data
demands for all data-driven applications is likely impossible.

V. POSSIBLE DIRECTIONS

Inspired by the main motivations behind designing a gen-
eralized framework, we focus on possible instantiations of
OpenData frameworks. We classify them into three possi-
ble directions: domain-specific, model-specific, and data-assist
frameworks. Here we provide more details on each category.

A. Domain-specific solution

A domain-specific solution leverages client-side applica-
tions or a centralized network controller within the framework
to automate the development of data-driven applications for

specific networking domains, such as video streaming or traffic
classification. These applications collect training data either
locally or by importing data from the framework, which facil-
itates data collection and processing. Domain-specific insights
and algorithms can be incorporated into a domain-specific
solution to help automate the labeling process, reducing the
difficulty of labeling data on the fly, and efficiently managing
the time disparity between features and labels. In congestion
control, for instance, specific heuristics and techniques like
leveraging ACK packets and round-trip time (RTT) measure-
ments can be used to effectively label data and manage the
time disparity by setting labels within a designated time-scale
window. Similarly, in video streaming applications, a domain-
specific solution can integrate video player analytics to collect
local data on video quality, buffering events, and network
conditions.

Furthermore, the domain-specific solution optimizes com-
putational, memory, and bandwidth overhead by incorporating
resource-efficient data collection and processing mechanisms.
This ensures a balance between data-driven functionalities and
system performance. The framework can employ distributed
data collection strategies and leverage large-scale parallel
processing systems to handle the substantial amounts of data
generated by distributed clients to enhance scalability and
overall efficiency of data-driven applications. Ultimately, this
domain-specific approach improves the performance of data-
driven models in specific networking domains.

B. Model-specific solution

There are three main machine learning paradigms (SL, UL,
and RL), and each has been branched into several specific
types. These learning paradigms have distinct building and
training processes, necessitating a framework that provides
model-specific services to facilitate online data processing,
training, and model maintenance. For instance, a framework
can offer graph data structures and libraries specifically de-
signed for deploying graph neural network (GNN) models.

This model-specific approach optimizes the performance of
data-driven models within networking domains by leveraging
techniques and algorithms tailored to the characteristics of
each learning paradigm. In the context of reinforcement learn-
ing (RL) applications, a model-specific solution can provide
services that facilitate efficient data processing and RL model
training. These services may include specialized algorithms for
reward shaping, exploration-exploitation strategies, and model
update mechanisms. Similarly, in supervised learning (SL) or
unsupervised learning (UL), the model-specific solution can
offer feature selection techniques, data augmentation methods,
and algorithms designed to accommodate the unique features
of networking data. By providing these services, the solution
streamlines the training process, reduces computational over-
head, and optimizes the performance of models in networking
scenarios.

C. Data-assist solution

In a nutshell, A data-assist solution represents an approach
where a dedicated framework enables a data-driven application

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2023.3320929

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Thompson Rivers University Library. Downloaded on October 09,2023 at 18:09:48 UTC from IEEE Xplore. Restrictions apply.

6

to aggregate its local data with data obtained from other
network elements. This framework provides mechanisms for
efficient data collection, data synchronization, and data fusion
to create a more comprehensive and diverse dataset. For
example, consider the scenario of optimizing CDN and bitrate
selection for individual video sessions. By providing a global
view of video quality, the data-assist solution allows the model
to make informed decisions regarding the selection of CDN
and bitrate. This holistic approach takes into account diverse
factors such as network congestion, user preferences, and
quality metrics from various sources. By aggregating data from
multiple sessions and network elements, the model can benefit
from a broader perspective and make more accurate decisions.

The data-assist solution offers several advantages, particu-
larly in situations where decision quality exhibits significant
spatial diversity or temporal variability, and where individual
decisions may lack sufficient data for reliable outcomes. By
aggregating data from multiple sources, the solution enhances
the availability and diversity of training data, overcoming
limitations posed by data scarcity for individual decisions. This
approach improves the model’s accuracy by incorporating a
wider range of network conditions, user behaviors, and system
dynamics.

Through the centralized aggregation of data, the data-
assist solution empowers the model to make more informed
decisions, optimize resource allocation, and deliver enhanced
performance in complex and dynamic network environments.
By leveraging the collective intelligence of multiple network
elements, the solution facilitates better decision-making, re-
duces computational costs, and produces more interpretable
models. It offers a powerful means to harness the full potential
of data-driven applications in network domains and optimize
their performance.

VI. CASE STUDY: QOS FORECASTING MODEL

To demonstrate the effect of using a framework to collect
and provide online networking data, we train and test a
Quality of Service (QoS) forecasting model in our production
overlay network. Our overlay network hosts various large-
scale services and is built on an infrastructure of connected
centers through high bandwidth wide area networks. The
current interest towards adaptable and re-configurable systems
in dynamic environments such as wide-area overlay networks
has resulted in a need for an automatic QoS detection sys-
tem. QoS forecasting models [12] have been presented as a
promising technique to predict future QoS values in supporting
and improving proactive network management systems [13].
Our model utilizes past networking data and generates future
predictions for the features of latency, packet loss rate, and
jitter. This allows the study of online data on the performance
of a data-driven solution in a production network.

A. Methodology

We deployed 12 nodes in 12 geographically different lo-
cations in our worldwide overlay network. To generate data,
each node used the Ping tool to send 10 ICMP ping messages
to another node in 10-second time intervals. Then, data was

TABLE II: Datasets collected from an overlay network

Dataset # Nodes # Logs Duration Interval
Dataset A 12 1955756 Four days 10 sec
Dataset B 12 1087349 Two days 10 sec

recorded by logging the results of the ping which contained
source ID, destination ID, timestamp, packet loss rate, average
RTT, and average jitter. As shown in Table II, we conducted
two sets of experiments and collected two datasets. Dataset
A, which includes about two million connection logs, was
collected for a period of four days from May 13, 2021, to
May 16, 2021. Two months later, Dataset B, which includes
one million connection logs, was collected for a period of two
days from June 20, 2021, to June 21, 2021. We trained the
QoS forecasting model in three different scenarios: Model 1
was trained only over Dataset A, Model 2 was trained only
over Dataset B, and Model 3 was first trained over Dataset A
and then re-trained over Dataset B. We tested all three models
over unseen data from Dataset B, where each test case was
over a pair of source and destination nodes.

We deployed a network of 12 nodes located in geographi-
cally distinct areas within our worldwide overlay network. The
data generation process involved each node utilizing the Ping
tool to transmit 10 ICMP ping messages to another node at
intervals of 10 seconds. Subsequently, we recorded the ping
results, which encompassed essential information such as the
source ID, destination ID, timestamp, packet loss rate, average
round-trip time (RTT), and average jitter. The data collection
process yielded two distinct datasets, namely Dataset A and
Dataset B, as outlined in Table II. Dataset A was amassed over
a four-day period, spanning from May 13, 2021, to May 16,
2021, and consists of approximately two million connection
logs. In contrast, Dataset B was gathered two months later
over a two-day period, specifically from June 20, 2021, to
June 21, 2021, and comprises one million connection logs. Our
QoS forecasting model was trained in three distinct scenarios:
Model 1, which exclusively employed Dataset A for training;
Model 2, trained solely on Dataset B; and Model 3, initially
trained on Dataset A and subsequently retrained using Dataset
B. To assess the performance of these models, we conducted
testing on unseen data from Dataset B, with each test case
involving a pair of source and destination nodes.

To facilitate the machine learning (ML) approach, we
employed a Long Short-Term Memory (LSTM) model as
the underlying model architecture. The features utilized for
training the model consisted of the source ID, destination
ID, timestamp, packet loss rate, average RTT, and average
jitter. Notably, we leveraged a history log length of 100 and
a timestep of 20 seconds to capture the relevant temporal
dependencies within the data.

B. Preliminary Results

Figure 2 represents the results of 116 different test cases on
predicting latency (Figure 2a) and packet-loss rate (Figure 2b).
Each test case was conducted on a random pair of source and
destination nodes. As we see, Model 2, which was trained
only on Dataset B, outperforms the other two models in

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2023.3320929

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Thompson Rivers University Library. Downloaded on October 09,2023 at 18:09:48 UTC from IEEE Xplore. Restrictions apply.

7

(a) Latency

(b) Packet Loss Rate

Fig. 2: Performance of three QoS forecasting models

predicting latency and packet-loss rate in most test cases.
Model 1 performed the worst among these models, which
indicates the vulnerability of data-driven systems to the data
drift problem [14]. The data drift problem is a result of a
mismatch between training data in the past and test data in the
future, and it can lead to significant performance degradation
and system inefficiencies [14]. Interestingly, Model 3 only
performed slightly better than Model 1, which indicates that
re-training a model with new data does not necessarily adapt
the model to the environment changes.

Another observation from Figure 2 is that Model 2 performs
more consistently than the other two models. We observed that
Model 3 has a similar standard deviation of mean absolute
error (MAE) to Model 1, whereas the standard deviation for
Model 2 is less than half of the other two models. The final
observation is the prediction performance of Model 2 for
packet-loss rate. Since 87% of the packet-loss data in our
dataset is 0, it is very difficult for a model to infer the future
packet-loss rate. However, as we see in Figure 2b, Model 2

can significantly outperform the other two models in most test
cases. This observation is aligned with [8] that proper data can
address the data scarcity issue.

VII. CONCLUSION/FUTURE DIRECTIONS

In recent years, the effect of ML has been felt across
computer networks. In current practice, synthetic datasets or
data collected from other networks are used in the train-
ing and validation of ML models, and their applicability
in practical settings remains questionable. To this end, we
presented OpenData, a generalized framework to facilitate
online training in a production network. We argue that Open-
Data has the potential to significantly improve a model’s
performance through harnessing online data. By training a
QoS forecasting model with old and fresh networking data,
we observed that fresh data can partially address the data drift
and data scarcity problems. However, we identified several
key challenges to design a generic framework to support all
data demands for all type of data-driven applications. Finally,
we proposed possible directions to provide a broad research
guideline on networking with machine learning to motivate
researchers in developing innovative algorithms, standards, and
frameworks. There are also several architectural challenges
that a data-driven framework like OpenData must address. For
example, this framework must be scalable (i.e., scale to tens
of millions of concurrent sessions per second) and responsive
(i.e., respond to every client request within at most tens of
milliseconds) [15]. We believe by developing frameworks and
protocols that provide services to develop ML applications, we
can unleash the unharnessed potential of data-driven solutions
in computer networks.

REFERENCES

[1] T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira, “Verifying learning-
augmented systems,” in Proceedings of the 2021 ACM SIGCOMM 2021
Conference, 2021, pp. 305–318.

[2] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, pp. 1–99, 2018.

[3] B. Arzani, K. Hsieh, and H. Chen, “Interpretable feedback for automl
and a proposal for domain-customized automl for networking,” in
Proceedings of the Twentieth ACM Workshop on Hot Topics in Networks,
2021, pp. 53–60.

[4] Y. Zhao, Y. Li, X. Zhang, G. Geng, W. Zhang, and Y. Sun, “A survey
of networking applications applying the software defined networking
concept based on machine learning,” IEEE Access, vol. 7, pp. 95 397–
95 417, 2019.

[5] N. Wu and Y. Xie, “A survey of machine learning for computer
architecture and systems,” ACM Computing Surveys (CSUR), vol. 55,
no. 3, pp. 1–39, 2022.

[6] M. E. Kanakis, R. Khalili, and L. Wang, “Machine learning for computer
systems and networking: A survey,” ACM Computing Surveys (CSUR),
2022.

[7] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in Proceedings of the 15th
ACM workshop on hot topics in networks, 2016, pp. 50–56.

[8] J. Kim, Y. Jung, H. Yeo, J. Ye, and D. Han, “Neural-enhanced live
streaming: Improving live video ingest via online learning,” in Proceed-
ings of the Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies, architectures,
and protocols for computer communication, 2020, pp. 107–125.

[9] E. Liang, H. Zhu, X. Jin, and I. Stoica, “Neural packet classification,”
in Proceedings of the ACM Special Interest Group on Data Communi-
cation, 2019, pp. 256–269.

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2023.3320929

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Thompson Rivers University Library. Downloaded on October 09,2023 at 18:09:48 UTC from IEEE Xplore. Restrictions apply.

8

[10] T. D. Nadeau, MPLS network management: MIBs, tools, and techniques.
Elsevier, 2003.

[11] F. Y. Yan, H. Ayers, C. Zhu, S. Fouladi, J. Hong, K. Zhang, P. Levis,
and K. Winstein, “Learning in situ: a randomized experiment in video
streaming,” in 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20), 2020, pp. 495–511.

[12] A. Amin, A. Colman, and L. Grunske, “An approach to forecasting qos
attributes of web services based on arima and garch models,” in 2012
IEEE 19th International Conference on Web Services. IEEE, 2012, pp.
74–81.

[13] G. White, A. Palade, and S. Clarke, “Forecasting qos attributes using
lstm networks,” in 2018 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2018, pp. 1–8.

[14] A. Mallick, K. Hsieh, B. Arzani, and G. Joshi, “Matchmaker: Data drift
mitigation in machine learning for large-scale systems,” Proceedings of
Machine Learning and Systems, vol. 4, pp. 77–94, 2022.

[15] J. Jiang, V. Sekar, I. Stoica, and H. Zhang, “Unleashing the potential of
data-driven networking,” in International Conference on Communication
Systems and Networks. Springer, 2017, pp. 110–126.

This article has been accepted for publication in IEEE Network. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MNET.2023.3320929

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Thompson Rivers University Library. Downloaded on October 09,2023 at 18:09:48 UTC from IEEE Xplore. Restrictions apply.

