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Abstract—Instagram is a popular network application for
photo sharing, video streaming, and online social media in-
teraction. In this paper, we present results from an initial
characterization study of Instagram network traffic, as viewed
from a large campus edge network. Despite the challenges of
NAT, DHCP, end-to-end encryption, and high traffic volume,
we are able to identify key characteristics of Instagram traffic,
which exceeds 1 TB per day. The main highlights from our study
include classic observations such as diurnal usage patterns, Zipf-
like distributions for IP frequency-rank profile, and heavy-tailed
transfer size distributions.

Index Terms—Network traffic measurement; Internet traffic
characterization; online social networks; Instagram; TCP/IP

I. INTRODUCTION

Internet traffic is always changing, as new network ap-

plications come to the forefront and grow in popularity. In

some cases, these applications displace prior network services,

which decrease in popularity since they are no longer in vogue.

In other cases, the new applications just compete for our

attention, and add to the time that people spend online.

On today’s Internet, a lot of the traffic is for video stream-

ing. Prominent examples include services like YouTube and

Netflix, for our personal entertainment. However, these are

not the only popular network applications. People also want to

communicate with each other, whether it is through traditional

email, or via the latest and greatest social media applications.

In the last few years, Instagram has grown rapidly in usage

and popularity. It is a popular Internet service for photo

sharing, video streaming, and online social media interaction.

Instagram has arguably become the newest and hottest social

media application, especially among high-school and college-

age students, as well as the general public.

In this paper, we investigate the use of Instagram by our

campus community at the University of Calgary. We believe

that campus networks offer a rich and fertile environment

for studying current trends in network application usage,

because of the high-speed network connectivity, the flexible

usage policies, and the large cohort of young and technically-

savvy users, who are often referred to as “digital natives”

because of how they spent their growing up years online [31].

Furthermore, such studies can help identify the performance

implications of these network applications on future enterprise

networks, whether in academia or industry.

As motivational context for our work, it is important to

consider previous studies of Internet traffic. Prior researchers

have looked at the emergence of YouTube video streaming for

user-generated content [8], [11], [15], the usage of wireless

LANs [10], [22], and Netflix video streaming traffic [1], [2],

[19]. More recent papers from our own group at the University

of Calgary have looked at Learning Management System

(LMS) traffic, and Outlook (Office 365) email traffic [34].

All of these studies have offered insights into the usage and

performance of current network applications, and ways to

improve them in the future.

One of the primary technical challenges in traffic character-

ization studies of this type is the growing use of end-to-end

encryption on the Internet. While encryption is essential for the

privacy and security of online users, it also obfuscates several

aspects of the traffic, such as file names, types, and content

popularity. A secondary challenge is the growing complexity

of campus enterprise networks, which often use middle-boxes

(e.g., wireless APs, DHCP, NAT, VPN) to support flexible

BYOD (Bring Your Own Device) networks. These technolo-

gies also enhance privacy by obscuring aspects of the traffic

(e.g., number of users, user location, mapping between IP

addresses and end-user devices), making session identification

and user modeling difficult. Nonetheless, key characteristics

can still be discerned from the traffic, such as diurnal usage

patterns, content sizes, and bandwidth consumption.

The two main research questions in our work are:

• What are the key characteristics of Instagram traffic?

• What are its network performance implications?

Many of the techniques used in this paper are inspired by

prior works on network traffic measurement, power-laws, and

heavy-tailed distributions, such as [2], [9], [21], [24]. We

seek to establish the existence of these properties (or not) in

campus-level Instagram traffic.

The rest of this paper is organized as follows. Section II

provides some background on Instagram, and discusses prior

research on Internet traffic measurement. Section III describes

our research methodology, measurement infrastructure, and

software tools for data collection and analysis. Section IV

presents the traffic characterization results. Finally, Section V

concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Instagram

Instagram is a photo and video sharing service owned by

Facebook [32]. The platform was originally developed by

Kevin Systrom and Mike Krieger, and its initial release was
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on October 6, 2010. The platform quickly grew in popularity,

with 25,000 signups on the very first day [17].

Using Instagram, people can share their photos and videos

with the world, categorizing them using hashtags, and describ-

ing the photos using a short text. A user can browse through

postings from other users, either by user or by hashtag, and

“like” the posts of other users to show their support for it [32].

Currently, Instagram has over one billion users who are

active at least monthly. Each day has more than 500 million

users active, posting more than 400 million stories [17].

Instagram keeps expanding its functionality beyond the

posting/liking of photos and videos. Some of the newer

features are [32]:

• Instagram Direct: users can send messages directly to

other users.

• Instagram Stories: a Snapchat-like feature, where users

can share photos/videos publicly for 24 hours.

• Instagram TV (IGTV): supports uploads of longer videos

filmed in different formats (e.g., smartphone).

• Live Streaming: users can send/receive live video stream-

ing sessions with multiple other users.

B. Related Work

Internet traffic measurement is a well-known technique to

facilitate the study of network-based applications [12]. The

two main methodological approaches are passive and active
network measurement. Passive approaches observe a network

system without perturbing it, while active approaches use test

sessions or probe packets to see how a server or a network

handles certain requests. These two basic techniques can be

used to collect and analyze data about network systems. A

tutorial on network traffic measurement is available in [33].

A primary goal of network measurements is traffic char-

acterization. Web browsing [4], [9], peer-to-peer applica-

tions [20], [6], and video streaming services [8], [11], [15]

are examples of network applications that have been studied

in the past. Other works have focused on smartphone traf-

fic [14], Learning Management Systems [28], and online social

networks [7], [18], [16], [23], [25], [26], [29].

Network traffic measurement studies are especially valuable

when they identify performance problems with particular

protocols, applications, or services, or can predict potential

performance implications in the future. For example, Adhikari

et al. studied Netflix [1], [2] and the evolution of its CDN in-

frastructure to support large-scale video streaming services. In

our present paper, our measurements help provide insight into

the potential performance implications of Instagram traffic on

our campus network, as well as on Instagram’s infrastructure

itself. For example, our measurements show that Instagram

now accounts for over half of the total Facebook traffic seen

on our campus network.

III. METHODOLOGY

Our traffic characterization study is conducted using a

combination of passive and active network measurement. All

the measurements are captured at the University of Calgary in

Calgary, Alberta, Canada.

The primary datasets used in our paper are collected using

passive traffic measurement. At the edge router connecting

the University of Calgary to the Internet, we have installed

specialized hardware for Internet traffic measurement. Our

Endace DAG packet capture card sees all inbound and out-

bound network packets in a mirrored stream from the campus

edge router. For privacy reasons, we only process packet

headers, and not packet payloads (which are often encrypted

anyway). To conserve on storage space requirements for long-

term data collection, the packet streams are processed using

Zeek (formerly called Bro [27]) to produce TCP connection-

level summaries.

Each connection is summarized into a one-line entry in a

log, as shown in the example in Figure 1. We use the default

Zeek connection log format. The most relevant fields for our

needs are the timestamp, the source IP address and port, the

destination IP address and port, the TCP connection duration,

the TCP connection state, and the counts of packets and bytes

sent and received on each TCP connection.

We pre-process the logs to extract only the Instagram

traffic of interest. Looking at the IP addresses used by

Instagram and Facebook, there are many different addresses,

and they change frequently, since these are cloud-hosted

services in AWS, with lots of DNS round-robin for load-

balancing across servers. However, through some active

measurements of Instagram test sessions locally (using

an Android smartphone, the Instagram mobile app, the

Charles proxy software, and experiments with login/logout,

messaging, photo sharing, live streaming, and IGTV), we

identified one particular IP address (157.240.3.63) that was

used consistently in over 90% of the Instagram requests

seen. The DNS host names associated with this IP are

i.instagram.com, platform.instagram.com,

instagram.c10r.facebook.com,

scontent-sea1-1.cdninstagram.com, and

graph.instagram.com, all of which resolve to the

same IP address. The data we study in this paper is only for

connections to this address.

In this paper, we focus on a single week of data from

Sunday March 3, 2019 to Saturday March 9, 2019. This

week is from the middle of the academic semester, when

many students, staff, and faculty are around campus, and thus

provides a representative sample of Instagram activities. The

data contains just over 13 million TCP connections between

the University of Calgary and Instagram.

IV. EMPIRICAL MEASUREMENT RESULTS

This section presents the Instagram traffic measure-

ments from our campus edge network. Specifically, we

focus on traffic destined to IP address 157.240.3.63,

which is known as i.instagram.com. While there

are several other IP addresses involved in an Instagram

session (e.g., b.i.instagram.com 157.240.3.174 and

graph.facebook.com 157.240.3.20), this IP appears to
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Timestamp UID Src_IP SPort Dest_IP DPort Prot Svc Duration TCPout TCPin State IPout B_out IPin B_in
15628.248886 CDu29N3WgQZb 1.2.3.4 50468 157.240.3.63 443 tcp ssl 165.901378 9053 86515 S3 100 14297 98 90892
15628.250997 CThhn41tYm27 1.2.3.4 50470 157.240.3.63 443 tcp ssl 3.334059 489 447 RSTO 11 1093 7 1133
15628.301082 Cz1RCa39Ralf 1.2.3.5 50040 157.240.3.63 443 tcp ssl 329.763400 425964 45413 SF 737 468313 538 73893
15628.307782 CwGcdG3hgX7e 1.2.3.6 62558 157.240.3.63 443 tcp ssl 0.004667 39 39 SF 4 247 5 263
15628.316061 CLkeo71eiHx1 1.2.3.7 57396 157.240.3.63 443 tcp ssl 209.412519 5239 91968 SF 67 9983 83 94918
15628.348089 COhKpI2ASJOg 1.2.3.7 57397 157.240.3.63 443 tcp ssl 209.388824 7489 914542 S3 454 31736 682 933553
15628.502214 CVh9Ev3pUSga 1.2.4.1 52990 157.240.3.63 443 tcp ssl 8.459407 1703 126326 SF 83 6031 99 131482
15628.504240 CpDJJC4XfYE8 1.2.4.1 52991 157.240.3.63 443 tcp ssl 8.457381 2222 962556 SF 431 24646 719 998714

Fig. 1. Example of Selected Fields from the Zeek Connection Log Format for Empirical Analysis of Instagram Traffic (anonymized source IPs)

Fig. 2. Daily Patterns for Instagram Traffic (March 3-9, 2019)

be the main entry point into Instagram, and accounts for over

90% of the HTTP(S) requests during our test sessions. We

thus focus on this single IP, with the caveat that our results

may slightly underestimate the total Instagram traffic.

A. Overview

Table I provides a statistical summary of our week-long

dataset. The table shows the daily totals for connections, pack-

ets, and bytes for Instagram traffic, as well as some structural

properties of the data, such as the number of distinct local IP

addresses and /24 subnets observed. The primary observations

from Table I are the high data volumes generated by Instagram

traffic (e.g., about 1 TB per day), the asymmetry of this traffic

(e.g., received bytes exceed sent bytes by about a factor of

20), and the large client base (e.g., several thousand distinct

IP addresses observed, many of which are NAT addresses

with multiple users behind them). What is also remarkable

is the consistency in the traffic from one day to the next. A

typical weekday involves about 2 million TCP connections to

Instagram from 1,600 different IP addresses across about fifty

/24 subnets, exchanging well over 1 TB of data. Each TCP

connection lasts about 72 seconds on average, though this is

slightly higher on weekends.

Figure 2 provides an graphical view of the daily Insta-

gram traffic. The Instagram traffic shows a strong diurnal

pattern, as is common for many Web-based applications and

services. Traffic activity rises quickly each morning, peaks

near mid-day, and then declines gradually in the mid-to-late

afternoon and evenings. The Instagram connection counts are

quite consistent on each weekday, but drop by about 60%

on the weekends. This pattern reflects the diurnal activities

of the faculty, staff, and students on campus. The network

traffic is higher when more people are present on campus,

although Instagram traffic continues late into the evening,

perhaps reflecting students in labs, libraries, coffee shops, or

dormitories.

Another observation from Figure 2 is the consistency of

the weekday traffic from Monday to Thursday, despite the

varying class lecture schedule (e.g., MWF versus TTh). There

is a slight decline on the Friday afternoon (yellow), and lower

activity levels on weekends (since no lectures take place, and

fewer people are on campus). There are also some subtle

differences between Saturday (dark blue, with slightly lower

traffic, especially in the evening) and Sunday (light blue,

with slightly higher traffic in the evening). These patterns are

consistent with the intuition of Friday and Saturday evenings

for social outings, with Sundays and “school nights” for

catching up on academic and/or online pursuits.

B. TCP Connection State

Our next analysis focuses on TCP connection state. As

indicated in the sample log data in Figure 1, some connections

have TCP’s normal opening handshake (SYN) and closing

handshake (FIN), resulting in state SF, while some do not. For

example, some SYN connection requests are never answered

(S0), and some TCP connections are aborted with a reset,

either by the originator (client) or the responder (server).

Furthermore, some connections might last so long that they

commence in one (3 hour) log and finish in a different log.

These partially observed connections can have several different

states in the connection log, such as S1, S2, S3, or OTH.

Table II provides a statistical summary of the TCP con-

nection states observed in our dataset. Approximately half

(47.9%) have the normal SF state, while the other half do

not. Among the latter, the most prevalent is a reset of a

successful connection by the originating client (RSTO). There

could be many reasons for this, including a user aborting

slow content, changing pages prematurely, or deactivating their

mobile device. It could also reflect how some Web browsers

handle idle TCP connections [5]. Next most prevalent are

partial connections (S1, S2, or S3), many of which are long-

lasting and exchange a lot of data. Two other reset types are

also seen, either for unsuccessful connections (RSTS0), or

for successful connections reset by the server (RSTR). The

next state of interest is S0, for unsuccessful TCP connection

attempts. Finally, there are a half-dozen other unusual states

(e.g., half-open connections, REJECT, etc) that account for a

very small proportion of the total connections and bytes.
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TABLE I
OVERVIEW OF EMPIRICAL DATASET FOR INSTAGRAM TRAFFIC ANALYSIS (UNIVERSITY OF CALGARY, MARCH 3-9, 2019)

Item Description Sun Mar 3 Mon Mar 4 Tue Mar 5 Wed Mar 6 Thu Mar 7 Fri Mar 8 Sat Mar 9 Overall

TCP Connections 896,849 2,355,640 2,313,701 2,352,614 2,253,556 2,055,827 853,820 13.1 M
Mean Duration 78.7 s 72.1 s 71.9 s 72.0 s 72.3 s 73.4 s 76.7 s 72.3 s

Packets Sent 264.3 M 565.3 M 565.2 M 561.9 M 550.3 M 509.0 M 283.3 M 3.3 B
Packets Received 550.9 M 1,003 M 953.9 M 931.1 M 950.7 M 910.2 M 589.9 M 5.9 B

Bytes Sent 32.2 GB 63.4 GB 60.4 GB 60.2 GB 60.0 GB 57.3 GB 33.3 GB 367 GB
Bytes Received 695 GB 1,259 GB 1,196 GB 1,167 GB 1,193 GB 1,141 GB 744.5 GB 7.2 TB

Client IP Addresses 1,450 1,679 1,605 1,532 1,621 1,547 1,449 3,498
IP Subnets 31 60 53 49 59 52 49 81

TABLE II
SUMMARY OF TCP CONNECTION STATES OBSERVED

State Description Conns %Conns Bytes %Bytes

SF: SYN-FIN 6,265,336 47.88% 3.78 TB 52.55%
RSTO: origin reset 2,487,505 19.01% 1.74 TB 22.91%
S3: no FIN seen 1,554,591 11.88% 879.9 GB 11.21%
S2: client FIN only 595,772 4.55% 340.1 GB 4.38%
S1: server FIN only 498,635 3.81% 189.7 GB 2.33%
RSTOS0: fail/RSTO 354,775 2.71% 222.9 GB 2.87%
RSTR: rcvr reset 335,304 2.56% 49.2 GB 0.63%
SH: no SYN-ACK 294,300 2.25% 107.1 GB 1.37%
SHR: no SYN seen 273,951 2.09% 57.3 GB 0.74%
OTH: other state 201,788 1.54% 71.3 GB 0.92%
S0: failed setup 166,822 1.27% 0.03 GB < 0.01%
REJ: rejected 37,455 0.29% 4.5 GB 0.06%
RSTRH: rcvr reset 20,329 0.16% 2.0 GB 0.03%
Total 13,086,563 100.0% 7.5 TB 100.0%

Figure 3 provides a more detailed look at the TCP connec-

tion state. This is a time series plot, with a one-minute time

granularity for the week, and a small tick mark at midnight

as a demarcation between each day. The graph shows the

relative proportion of each (color-coded) TCP connection state

in each one-minute interval. The purple colors represent SF

(dark purple), S1, S2, and S3 (light purple), while S0 is yellow.

Two observations are evident from Figure 3. First, there is a

strong diurnal pattern in the TCP connection states. At night

time, the SF state dominates, while when the traffic load is

higher during the day, many other TCP states are observed.

Second, the downward “fingers” along the top of the graph

represent the busiest parts of each day. When the traffic load

is near its peak, there are more instances of unsuccessful

connections (RSTOS0 in dark green) and server-side resets

(RSTR in orange). There are also more half-open connections

(SH in light blue, and SHR in dark blue), but these could

be attributable either to the server, our monitor, or Internet

congestion (i.e., packet losses) in transit.

C. TCP Connection Duration

The next analysis focuses on how long each TCP connection

lasts. The TCP connection duration is reported in the logs, and

represents the elapsed time between the first packet (usually

a SYN) and the last packet (usually a FIN or a FIN/ACK)

observed for a given TCP connection.

Figure 4 shows the results from our analysis of TCP connec-

tion duration. Specifically, Figure 4(a) shows the cumulative

distribution function (CDF) on a linear scale, while Figure 4(b)

shows the pdf on a log scale, and Figure 4(c) shows the log-log

complementary distribution (LLCD).
There are several idiosyncracies in the connection duration

distribution. First, about 12% of the connections have a

duration of zero, since they consist of only a single packet.

Second, there is a small peak near 4 seconds, since many of

the failed (S0) connections give up after several unsuccessful

retransmission attempts. Third, there is a large peak at 65

seconds; we attribute this to a default persistent connection

timeout value for an idle TCP connection. Finally, there is

another peak at 185 seconds. Again, this is due to a persistent

connection timeout value used by the Instagram site. Through

active measurements, we have determined that the 65-second

timeout is used to terminate persistent connections when the

Instagram app is closed, and the 185-second timeout is used

when the app is still running in the background. Facebook’s

proxygen HTTP server also uses a 185-second timeout.
The CDF plot in Figure 4(a) shows a more detailed

breakdown of the connection duration distribution based on

TCP connection state. The S0 connections are the shortest,

typically lasting 2-5 seconds, and appear in the upper left part

of the plot. Successful (SF) connections have a wide range

of durations, with the median near 65 seconds, the average

near 83 seconds, and the longest observed connection (9,923

seconds) lasting almost 3 hours. The distributions for S1/S2/S3

connections are similar in shape to SF, though S1 connections

tend to be much shorter, S2 connections only slightly shorter,

and S3 connections tend to be much longer than SF. The

“kinks” in these CDF plots for SF and S1/S2/S3 connec-

tions align with the persistent connection timeouts mentioned

earlier, namely at 65 seconds and 185 seconds. Furthermore,

many of the RSTR connections occur at exactly 65 seconds,

suggesting that the reset is a mechanism for the server to

reclaim needed resources. Finally, the RSTO connections tend

to be shorter; this line falls between those for S0 and S1.
Since the TCP connection durations vary so widely, we

apply a log-transform (base 2) to the duration data, and re-

plot the distribution in Figure 4(b). Note that the vertical scale

now is also logarithmic. This graph shows a wide-ranging

distribution, from the single-packet connections with near-zero

duration, to the connection that lasted almost 3 hours. The

tallest peak in this distribution represents durations of 64 to

127 seconds.
The LLCD plot in Figure 4(c) provides a closer look at

the tail of the distribution, on a log-log scale. In this graph,
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Fig. 3. Time Series Illustration of TCP Connection State in One-Minute Intervals for Instagram Traffic (March 3-9, 2019)

(a) CDF (linear scale) (b) pdf (log2 transform) (c) LLCD

Fig. 4. Distribution of TCP Connection Duration for Instagram Traffic

the straight line (slope -3.15, R2 = 0.9748) indicates a power-

law structure, implying a heavy-tailed distribution for the TCP

connection duration. The tail of the distribution starts near 100

seconds, and spans almost all the way to 10,000 seconds.

D. Data Transfer Sizes

We next look at the data volumes exchanged on TCP

connections, either inbound or outbound. We do so based on

both packet counts and byte counts, as a sanity check on

our data. The smallest packet sizes observed are 40 bytes,

and the average packet size on the large transfers is around

1,440 bytes. Both these values make sense for typical TCP/IP

implementations on the Internet.

Figure 5 shows LLCD plots for the number of packets

sent and received on each TCP connection. Since this number

varies widely, we apply a log-transform to this data, using

base 2. In general, the received packet counts are slightly

higher, though the two values are comparable since TCP uses

ACK packets to ensure reliable data transfer. With TCP’s

delayed ACK strategy, the number of ACKs is typically half

the number of data packets. The tail of the distribution has

several connections with well over 100,000 packets, possibly

for photos or streaming videos. The graph suggests that

both distributions are heavy-tailed, based on the straight-line

behavior in the tail of the distribution on the log-log plot

(similar slopes for both: -1.85, R2 = 0.9887).

Figure 6 shows the results for the number of bytes sent and

received on each TCP connection. This number varies widely,

from zero bytes to 600 MB, so we again apply a log-transform

(base 2) to this data. Figure 6(a) shows the pdf of the resulting

distribution for bytes sent, while Figure 6(b) shows the pdf

Fig. 5. Distribution of Transfer Sizes in Packets

for bytes received. The tallest bars are for connections with

less than 1 KB of data, although the distribution continues

well to the right. Two connections sent over 100 MB of

data (possibly for live streaming or for video uploads), and

two connections received over 600 MB of data. In general,

the received byte counts are about an order of magnitude

larger than the bytes sent, though this does not hold true for

individual TCP connections that are uploading lots of data.

Figure 6(c) shows the CDFs of the two distributions, while

Figure 6(d) compares their LLCD plots. Both distributions

are heavy-tailed, with the bytes received (slope -1.53, R2 =
0.9633) having a longer tail (slope -1.1, R2 = 0.9856).

E. TCP Throughput

From the TCP connection durations and transfer sizes, it

is possible to analyze the TCP throughput achieved, both for

inbound and outbound data transfers. For smaller transfers,
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(a) Bytes Sent pdf (b) Bytes Received pdf (c) CDF (d) LLCD

Fig. 6. Distribution of Transfer Sizes in Bytes

Fig. 7. LLCD Plot for TCP Connection Throughput

persistent connection timeouts bloat the duration, resulting in

low average throughput. For larger transfers, however, this

metric provides a good assessment of TCP performance, and

the demands being placed upon the campus network and the

Instagram servers.

Figure 7 shows the results from this analysis. Specifically,

we only consider SF connections that last at least 1.0 sec-

onds, of which there are 5.9 million. We again use our log

transform (base 2) on the throughputs, which vary widely. In

general, the received throughputs are much higher than the

sending throughputs. The highest value observed for sending

throughput was just over 10 Mbps, for a 1.6 MB transfer

that completed successfully in 1.32 seconds (Tuesday 9:28am).

For receiving throughput, the highest value observed was 65

Mbps, for a 12 MB transfer that completed successfully in

1.54 seconds (Monday 2:45am).

Figure 7 shows the LLCD plots for throughput. Both

distributions have a pronounced tail. The receive throughputs

are about an order of magnitude higher than the sending

throughput for the largest transfers observed. Through active

measurements, we have determined that the server supports the

TCP window scaling option, which enables higher throughputs

(but only if the client supports it as well).

F. Summary

Our characterization study of Instagram traffic has provided

several interesting insights. First, the sheer volume of this

traffic is staggering. On our campus network, the Instagram

traffic averages over 1 TB of data downloaded per day on

a normal weekday. This level of usage is third behind video

streaming services such as Netflix (6 TB per day) and YouTube

(4 TB per day), which together account for over half of the

daily inbound traffic on our campus network [19]. Second,

there is surprising consistency in the traffic from day to

day, suggesting that Instagram users are creatures of habit.

Third, the Instagram traffic exhibits power-law properties and

heavy-tailed distributions like other information systems. For

example, the TCP connection durations and the byte transfer

size distribution are heavy-tailed. While these characteristics

are similar for many Web and media streaming services, some

features of Instagram traffic also appear to be unique (e.g.,

TCP states, connection durations).

V. CONCLUSION

This paper has presented a network traffic characterization

study of Instagram, based on one week of data collected

from a campus edge network. We studied the traffic profile,

TCP connection states, transfer sizes, and throughput. We

identified several trends in the time series data, such as

diurnal patterns, consistency from day to day, and a notica-

ble decline on weekends. In many of our results, we have

found skewed distributions with high variability (e.g., transfer

sizes, throughputs), and heavy-tails (e.g., connection durations,

transfer sizes). These characteristics can have a large impact

on a campus edge network.

There are several interesting future directions to consider.

These include session-level characterization (without compro-

mising any user identities), and the dynamics of user mobility.

Finding an effective way to monitor network applications that

use many dynamic IPs in a cloud-based infrastructure is also

a measurement challenge.

More generally, Instagram is still a rather new social media

service, and is still developing as an app and influencing

user behavior online. Studies of the traffic/usage of Instagram

as reported in this paper can provide a baseline for future

studies of the social aspects of this technology. It will be

interesting to see how the behavioral tendencies evolve over

time, particularly as even more new features are added.
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