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ABSTRACT

Mobile video streaming is becoming increasingly popular. In this pa-
per, we describe the design and implementation of a cross-platform
measurement tool called MoVIE (Mobile Video Information Extrac-
tion) for video streaming on mobile devices. MoVIE is a client-side
traffic analyzer that studies smartphone video streaming from differ-
ent viewpoints. It collects information about network-level packet
traffic, transport-layer flows, and application-level video player
activities. Then it identifies relationships within the collected data
to make mobile video streaming activities transparent. MoVIE is an
open-source tool with a graphical user interface. In addition to net-
work traffic measurement, MoVIE supports objective Quality of Ex-
perience (QoE) evaluation of video streaming. These features make
MoVIE a powerful tool for network traffic measurement, multime-
dia streaming studies, and privacy analysis. We illustrate MoVIE’s
capabilities with a small case study of streaming 360° videos.
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1 INTRODUCTION

Over the past decade, smartphones have become an integral part of
our lives. The emerging mobile web supported by WiFi and 4G/5G
cellular networks allows anytime and anywhere Internet access
from hand-held devices such as smartphones. In the first quarter of
2019, the traffic from hand-held devices (excluding tablets) repre-
sented 48.7% of global web traffic [24].
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Among all Internet traffic consumption, video streaming has
the biggest share [2]. Everything from entertainment, sports, busi-
nesses, educational institutions, and governments are increasingly
using video streaming services. During recent years, video-on-
demand services such as Hulu, Netflix, Vimeo, and YouTube have
experienced explosive growth in terms of the number of users and
videos. Indeed, video delivery is shifting from traditional TV broad-
casting to online video streaming, and Internet traffic is dominated
by such videos. A recent report from Cisco [2] predicts that global
mobile traffic will increase 7-fold by 2022, and mobile video stream-
ing traffic will grow 11-fold, reaching nearly 79% of the world’s
total mobile traffic. This growth in mobile traffic will be a heavy
burden on mobile operators.

Another ongoing trend that is feeding this tremendous growth
is Head-Mounted Displays (HMDs). Devices such as Oculus Rift,
HTC Vive, and Google Cardboard have become widely available
and affordable for the public. These devices enable viewers to watch
immersive 360° videos with even higher bandwidth demands. Major
multimedia streaming providers such as YouTube and Facebook
now support uploading and viewing these 360° videos, which users
can watch by connecting their smartphones to the HMDs. However,
this technology demands huge bandwidth for streaming and also
the part of the video that is not in the user’s viewport is considered
as wasted bandwidth [27].

By increasing popularity in video streaming, this market has
welcomed many different providers. In this competitive circum-
stance, the video providers collect information about the user and
video streaming to improve their services. Besides, many of these
providers cover part of their costs through advertising and data
analytics. This questions the user’s privacy. Recently users are more
concerned about their privacy and security when they interact with
Internet services [26].

In this context, the characterization of video streaming on mo-
bile devices can provide a comprehensive understanding of video
streaming behaviours. Network measurement tools on their own
lack visibility into the video player activities, and existing video
quality measurement tools do not provide adequate insight into the
network traffic and privacy issues generated by mobile devices.

To tackle these issues, we have designed and implemented a tool
called MoVIE, which uses multiple observational viewpoints [1]
to extract information about mobile video streaming. It studies
video streaming from device, network protocol, and video player
viewpoints. Our tool has a graphical user interface that allows
researchers to have a multi-layer view of video streaming.

To illustrate the MoVIE functionality, we use it to study 360°
video streaming on smartphones. To the best of our knowledge,
there are no tools that investigate video streaming activities on
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smartphones using multiple coordinated viewpoints. Overall, the
main contributions of this paper are summarized as follows:

o We design and implement MoVIE, a video measurement tool that
provides multiple simultaneous views of streaming traffic.

e We propose a new mechanism to identify relationships between
packets, flows, and video player activities from generated traffic.

e We analyze the streaming of 360° videos from a mobile web player
viewpoint. MoVIE provides objective Quality of Experience (QoE)
metrics of video streaming. In our case study, we evaluate two
popular 360° video providers from different viewpoints.

e MOoVIE is open-source, portable to any operating system, and
easy to use and customize. We provide references to the MoVIE
website and source code.

The rest of this paper is organized as follows. Section 2 presents
an overview of the tool, followed by the detailed design and imple-
mentation in Section 3. Section 4 presents an initial case study, in
which we use MoVIE to analyze an Android device when it plays
360° videos from two different video streaming providers. Section 5
presents related work. Section 6 concludes the paper.

2 TOOL OVERVIEW

This section presents an overview of the MoVIE tool, which inter-
cepts and analyzes all network traffic into and out of a smartphone
during video streaming.

We aim to develop a user-friendly and easy-to-customize tool
to explore video streaming traffic, measure objective video stream-
ing QoE metrics, and provide visibility into streaming traffic. The
MOoVIE tool is designed with the following features:

e Visibility: MoVIE captures all incoming/outgoing Internet traf-
fic from the smartphone during the video streaming. It records
all video streaming activities such as the transmitted TCP/UDP
packets, HTTP/HTTPS requests and responses, streaming status,
and video buffering events. MoVIE provides a multi-level view of
video streaming network traffic, from the network packet level
to an application-level view.

e QoE Measurement: Video streaming users expect a Quality
of Experience (QoE) that is not always well-reflected by tradi-
tional network-layer QoS metrics such as packet loss, delay, and
jitter. QoE metrics are classified into objective and subjective met-
rics [21]. Objective QoE metrics, such as playback delay, video
quality switches, and the number of stalls, are metrics that can
be quantified with a measurement tool. MoVIE provides the ob-
jective QoFE metrics for video streaming. Subjective metrics, such
as Mean Opinion Score, must be collected directly from users.

e Privacy View: Smartphones involve sensitive information for
personal conversations, bank transactions, online purchasing,
tax payment, and so on. In addition, smartphones exploit sensors
like GPS, camera, and microphone to provide better services, but
increase the potential risk of privacy violation. Recent studies
show that people are concerned about the privacy of themselves
and their children. MoVIE provides a full view of the generated
connections, and it shows the tracking and advertisement flows.
It provides a detailed report of what data is collected and where
it is sent during the interactions with streaming websites.

o Traffic Mapping: In this paper, we propose a novel and accurate
mechanism to relate all transmitted packets to network flows and
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Figure 1: Structural overview of the MoVIE tool for mobile
video streaming analysis

video streaming status. In this way, MoVIE can report network
statistics such as bitrate, packet rate, average packet size, and
connection type for every single flow, with all flows related to
application-level video player activities.

o Comparability: MoVIE can process up to two video streaming
traces simultaneously, which is convenient for comparing video
providers, video codecs, and video players. This feature makes
MOoVIE a powerful tool to compare video streaming from different
devices, operating systems, providers, and codecs.

e Customizability: MoVIE is an open-source tool that visualizes
user interactions and enables researchers to view network flows,
captured packets, multimedia events, general statistics, graphs,
and so on. MoVIE is portable and can run on all desktop operating
systems. The measurement report is in HTML5 format, which
is supported by any modern browser and OS. To make MoVIE
an easy-to-customize tool, we: i) publish the source code on
GitHub; ii) design a website to explain the tool and illustrate
the experimental setting; iii) and provide several use cases with
reports and raw captured data.

3 TOOL DESIGN AND IMPLEMENTATION

This section discusses the design and implementation of MoVIE,
which captures all network traffic, request/response flows, and
video player events. Based on the captured data, MoVIE then pro-
vides a graphical view of video streaming traffic.

Figure 1 illustrates the architecture of MoVIE, which consists of
seven components: Traffic Interceptor, Packet Tracer, Player View,
Privacy View, Mapper, Main, and Graphical User Interface. We now
discuss each component in more detail.

3.1 Traffic Interceptor

MOoVIE characterizes all Internet traffic generated by the mobile
device during video streaming,. It starts with an application-layer
view of the activities generated by the Web browser. To achieve this,
we use MITMproxy [3] to transparently intercept all HTTP/HTTPS
traffic between the mobile device and the Internet. MITMproxy sits
between the two parties, and is able to intercept all transmitted
traffic to provide a coarse-grained view of all network activities
involving the smartphone. Since most mobile apps use TLS as the
default protocol for secure communication [17], we need to decrypt
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this traffic. MITMproxy can decrypt the TLS traffic if the mobile
device is configured to trust MITMproxy. Specifically, this requires
the MITMproxy CA certificate to be installed on the mobile device.
The Traffic Interceptor collects information such as URL, host name,
GET/POST requests, connection types, duration, request/response
timestamps, plus sender and receiver IP addresses and port numbers,
and sends them to the Main component. The example below shows
several lines of a flow response in JSON format:

{"Method":"GET", "Status_Code":"200",
"Content_Type":"video/webm", "Content_Length": "1912",
"Client_IP":"172.17.20.22", "Client_Port":"57924",
"Server_IP":"157.240.3.23", "Server_Port":"443",
"Host":"video-seal-1.xx.fbcdn.net", "User-Agent":
"Mozilla/5.0 (X11; Linux x86-64) AppleWebKit/537.36
(KHTML, like Gecko)Chrome/71.0.3578.98 Safari/537.36",
"TLS-Established":"True",
"ClientInitiatedTime":"1552886540.546299"}

3.2 Packet Tracer

We use TShark, a terminal-oriented version of Wireshark!, to cap-
ture full packet traces of Internet traffic generated by mobile video
streaming. TShark is a widely-used protocol analyzer, providing a
network-level view of traffic, similar to Wireshark. The raw packet
trace data can be saved in JSON, XML, and PCAP file formats.

The output from the Packet Tracer is sent to the Main compo-
nent for analysis. The example below shows some TCP packet
information in JSON format:

{"frame.time":"Jan 24, 2019 06:26:31.514545631 MST",
"frame.time_absolute":"1548336391.514545631",
"frame.time_relative":"5.724449491",
"frame.number":"41", "frame.len":"74",
"frame.protocols":"eth:ethertype:ip:tcp",
"ip.version":"4", "ip.proto":"6",
"tcp.stream":"1", "tcp.window_size":"29200"}

3.3

MOoVIE uses video player activities and events to measure video
quality metrics. It also exploits this information to determine the
relationships between video player events and network traffic gen-
erated by the mobile device.

We developed an Android app to collect and parse video prop-
erties [10], video player activities, and player events from video
player. The video log contains title, URL, audio/video codecs, dura-
tion, resolution, play starting time, video buffering events, video
resolution changes, and so on.

The output of this component is sent to the Main component for
analysis. The example below shows some video player log entries
in JSON format:

{"time":0,
"key":"origin_url","value":"https://www.youtube.com/"}
{"time": 0.010999999940395355,

"key": "frame_title", "value": "YouTube"}

{"time": 0.1459999978542328,

"key": "url", "value":

"blob:https://www.youtube.com/f169cece-5961-401c-a2ae"}
{"time": 3.623999997973442,

Player View

"key": "pipeline_state", "value": "kStarting"}
{"time": 990.527000002563,

"key": "found_audio_stream", "value": true}
{"time": 990.5300000011921,

"key": "audio_codec_name", "value": "opus"}

!https://www.wireshark.org

232

ICPE '20, April 20-24, 2020, Edmonton, AB, Canada

3.4 Privacy View

This component investigates the captured flows to detect potential
data leaks. It receives flows from the Traffic Interceptor component
and uses EasyList? to detect advertisement and tracking flows.
EasyList has a list of all international tracking and advertisement
URLs, and is the primary filtering list used by ad blockers. The
list is created and updated weekly by the ad-block community?
and supports many different geographical regions. This component
extracts a list of potential tracking and advertising flows from the
set of all flows observed.

3.5 Mapper

MoVIE exploits multiple observational viewpoints [1] for its analy-
sis of network traffic, flows, and video player activities. Mapping
the network packets captured by Wireshark/TShark to the flows
collected from MITMproxy, and relating this information to video
player activities, is an essential phase of MoVIE.

We need to identify the origins of each flow, for given video
streaming activities, and which packets correspond to those flows.
Prior work [18] has shown that previous mapping approaches in
many situations fail to map the passive network traffic to the cor-
responding mobile apps. In the following, we propose our own
novel mapping mechanism. In addition to mapping packets to the
corresponding apps, it maps the captured network traffic to each
responsible flow and video player activity.

In the following five subsections, we describe the step-by-step
details of our solution for this problem.

3.5.1 Flows: We use the header field of each generated flow to
group Internet connections. The User-Agent field identifies the
software component that originates the flow request. For example,
web browsers use the following User-Agent template [4, 19]:
[Name]/[version] ([system and browser information])
[platform] ([platform details]) [extensions]

Using this format, an Android Mobile User-Agent generated from
a Samsung Galaxy S9 smartphone might appear as follows:
Mozilla/5.0 (Linux; Android 8.0.0; SM-G96@F Build/R16NW)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.84
Mobile Safari/537.36

By exploiting this information, we can separate Web browser traffic
from other generated flows. For multimedia traffic that includes
video and audio streams, i0S devices use Apple Core Media/[v]
and Android devices use Stagefright as the User-Agent field. In
addition, we use the Host and ResolvedAddress fields of flows to
identify the host name and IP address of the destination server. In

the next step, we group related flows into sessions.

3.5.2 Sessions: A session might involve multiple flows for initiat-
ing, maintaining, and terminating that session. These flows have
several shared attributes, such as times at which the client and the
server initiated their (application-layer) communication. In addi-
tion, each (transport-layer) flow in a session has its own timestamps
for Client and Server TCP/TLS handshake, as well as request and
response timestamps.

Zhttps://easylist.to/easylist/easylist.txt
3http://adblock.mozdev.org
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We group all flows into sessions based on their common fields.
Each session contains a list of flows, host name, user agent, source
and destination IP addresses and port numbers, and client/server
connection establishment time. In the next step, we analyze the
captured packets from Wireshark/TShark.

3.5.3 TCP/UDP Streams: All packets in a Wireshark trace are auto-
matically grouped in TCP/UDP streams. A stream is a sequence of
packets transmitted between two transport-level endpoints in one
session. As a result, the packets of a session have the same value
for the tcp.stream or udp.stream field.

To find the destination host of each stream, we use the Host
field. For HTTP connections, one packet in the stream contains
the Host and User-Agent fields from the HTTP request header.
The Host field indicates the name of the stream destination. For
HTTPS connections, the destination host name is located in the
ssl.handshake.extensions_server_name field of the SSL layer
in one of the packets of that stream.

We group all packets according to their stream index. Each TCP
stream has its own packet list, destination host name, user agent,
source and destination IP addresses and port numbers, and packet
timestamps. We group UDP streams in a similar way. For UDP
streams that include DNS packets, we use the dns.qry.name field
to find the host name.

3.5.4 Mapping Packets to Flows: For each session identified by
MITMproxy, we observe two separate streams with the same host
name, source/destination IPs, and ports in the Wireshark trace. The
reason for this is that Wireshark and MITMproxy run on the PC,
and not the smartphone itself. As a result, each TCP session appears
twice: once from the mobile device to MITMproxy, and again from
MITMproxy to the destination server. Fortunately, the timestamps
of the flows differ slightly, making it easy to distinguish them.

We assign packets in each stream to the flows in the correspond-
ing session. The timestamps for requests and responses of each flow
are used to find the corresponding packets. This is doable since
there is a gap between the timestamps of packets from one flow
to the next one. To the best of our knowledge, we are the first to
provide an exact mapping of packets to flows. In the next step, we
map the video activities to flows.

3.5.5 Mapping Video Activities to Flows: In the final step of the
mapping process, we separate audio/video flows from other flows,
and use the timestamps of player activities and events to find the
corresponding flows. This completes the in-depth look at our Map-
per component.

3.6 Main Component

The Main component is the central part of MoVIE that manages and
coordinates all the other components. It receives a flow list from
the Traffic Interceptor, a packet list from the Packet Tracer, and the
video streaming activities from the Player View component. The
Mapper component assigns the connections based on all captured
information. Then the Main component analyzes the data to deter-
mine the video streaming metrics. It calculates the video streaming
QOoE parameters, statistics of packets and flows, categorizes data,
and so on. Finally, the Main component invokes the Graphical User
Interface to provide a visual representation of the results.
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3.7 Graphical User Interface (GUI)

The MoVIE tool represents video streaming analysis in a graphical
view. The multi-level visual representation in the form of tables and
graphs helps researchers gain better insight into the video stream-
ing behaviour. This GUI represents relationships and interactions
between the video player, the network, and the video provider. In
addition, network statistical reports such as throughput, flow sizes,
packet counts, and many more are represented in tables and graphs
that make them easy to explore.

The output of MoVIE is generated in HTMLS5 format which offers
several advantages. First, it is easy to use, and easy to export the
data for other purposes. Second, it is portable and only needs a
browser to explore the outputs. Last but not least, MoVIE is an
open-source tool, with source code available for customization. We
implemented a library to export data in HTML5 format to facilitate
report customization.

4 CASE STUDY

In this section, we illustrate the capabilities of MoVIE by using
it to study video streaming on a mobile device. We first describe
our experimental setup, and then use our tool to study 360° video
streaming from YouTube and Facebook.

4.1 Experimental Setup

We set up an environment that streams video sessions in a mobile
Web browser and collects packet traces, flow traces, and video player
activities. All video streaming was done on a Nexus 6 smartphone
(Quad-Core 2.7 GHz CPU, 3 GB RAM) running Android 7.0, with
video streaming performed using Chrome 72.0 as the Web browser.
MOoVIE ran on a separate PC (Core i7, 8-core, 3.6 GHz CPU, 8 GB
RAM) running Ubuntu 18.04 Linux. Both devices used WiFi for
communication. The PC was used to capture all incoming and
outgoing network flows and packet traffic from the mobile device.

To intercept the network traffic, we used MITMproxy 4.0 on the
PC to collect network flows. TShark 6.2.2 was used on the PC to
capture full packet traces of the Internet activities generated by the
smartphone. Our Android app was installed on the mobile device,
and used to parse the player log and send a JSON version of video
player activities to the MoVIE.

We prepared the mobile device by performing a factory reset to
ensure that other software or previous experiments do not impact
our experiments. In addition, we updated the OS and pre-installed
apps to the latest versions. We cleared the browser cache and his-
tory before each video streaming session. Then we installed the
MITMproxy CA Certificate on the device. During each test, we con-
figured the Chrome browser on the smartphone to send all network
traffic through the MITMproxy to collect HTTP/HTTPS flows. At
the same time, TShark was running on the PC to capture network
traffic at the packet level.

We streamed a single 360° video called “Lion Cub” from the
National Geographic Channel, using two different popular 360°
video streaming platforms: YouTube and Facebook. Evaluating the
same video content with two different streaming platforms helps
in understanding the differences in their services.

Once the network was set up, we started the data collection
tools on the PC and the video streaming on the mobile device. At
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the end of video streaming, our video logger application sent the
video player activities to MoVIE for further processing. After all
network traffic was complete, we used MoVIE to analyze the data.
All captured network data, video streaming log, and results are
available from our project Web site [10].

4.2 Measurement Results

MOoVIE’s report is divided into four parts: packet level, flow level,
video player level, and comparison. The first part provides a de-
tailed packet-level report of network traffic generated by the mobile
device. The second part presents a flow-level and privacy analysis
of the network traffic. The third part reports video player activities
and QoE metrics. The final part is for comparing two different video
streaming sessions. This could be used to compare streaming from
video providers, video services, video codecs, video encoders, video
players, and devices.

Here we illustrate each part in detail. Later, we compare 360°
video streaming from YouTube and Facebook.

4.2.1  Packet-Level View: The first part of the tool provides a packet-
level report of captured network traffic. As shown in Figure 2, this
report includes a tabular view of network traffic statistics, and
graphs! of sent/received network traffic. In addition, the whole
packet trace is available in sortable/searchable form for further
interactive exploration. The format includes detailed information
such as timestamp, source/destination IP, ports, packet length, type,
and other header fields for each individual packet.

This part of the tool is useful for studying video streaming be-
haviour. For instance, the graph of received bytes in Figure 2 in-
dicates that this video streaming uses an in-memory buffering
method. It starts by preloading a certain amount of video and audio
in advance, to prevent video stalls.

4.2.2  Flow-level View: This section presents a flow-level study of
the generated HTTP/HTTPS flows. First, it reports the statistics
about the type and the number of generated flows. Then it illustrates
them in graphs. For example, Figure 3 shows the distribution of flow
types and sizes, as well as a time-series graph of the flows generated
per second during the streaming. This graph shows (as expected) a
large number of flows generated at the start of the experiment. This
is because the smartphone sends an HTTP request to fetch a Web
page, and the HTTP response includes links to several resources
such as HTML, scripts, style sheets, images, and others, that must
be requested to complete the page loading.

As we expected, the video flows contributed most of the
sent/received data size. In addition, the number of video flows are
nearly four times more than the number of audio flows. This could
be because YouTube uses more video flows to cover a 360° sphere.
In another experiment?, we found that the number of audio and
video flows are equal in streaming regular videos from YouTube.

In addition, detailed flow information is listed in a sortable and
searchable table. For every single flow, it shows the URL, method
(GET/POST/other), status code, content length, content type, source
and destination IP addresses, ports, request/response times, and

!For space reasons, we show only part of the tool functionality here. For instance,
the packet level has eight graphs including sent/received packets/bytes, pdf, and CDF
charts. More details are available from our project Web site [10].
2The experiment’s data is available in the MoVIE’s website [10].
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Capturing Stop Time 2019-03-17 23:30:46 - Timestamp: 1552887046.81
Capturing Duration 119.01 sec
Sent Packets 1966 packets
Received Packets 3648 packets
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Figure 2: Packet-level view of YouTube streaming in MoVIE
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Figure 3: Flow-level view of MoVIE: the pie charts show
types and sizes of flows; the graph shows flow arrivals dur-
ing the streaming experiment

other fields. The user can also drill down to see the packet list for
each particular flow. In the example shown here, we observed that

YouTube uses HTTP/1.1 for audio/video streaming and HTTP/2.0

for other content types. The HTTP/2.0 Server Push feature allows
a server to proactively send resources to a client before the client
requests them.

Finally, MoVIE maps the generated flows to the EasyList entries.
For this example, it recognized 7 flows as advertisements or tracking
flows. Since MoVIE provides a detailed list of all flows, we are able
to investigate the generated connections. Here, all ad flows were
related to the Google ad services like googleads.g.doubleclick.net.
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4.2.3  Player-level View: In this part of the GUI, MoVIE gives de-
tailed information about the streaming events. First, it provides
general info about the video such as video/audio codecs, resolution,
and duration. Then it reports the QoE metrics of the streaming that
includes startup time, number of quality switches, and number of
audio/video rebuffering events. Startup time is the time taken to
download enough chunks to begin playback. The number of quality
switches is calculated by counting the total number of times that
the video resolution is changed. Buffering is used to store video
chunks that have been downloaded but not yet played. If the player
does not find sufficient new data in the buffer, it causes a pause
during the playback.

As seen in Table 1, YouTube uses the Opus audio codec and the
VP9 video codec for 360° videos. The playback start time was 1.2
seconds. In this particular experiment, we did not observe any video
quality switches or rebuffering events.

In addition, as seen in Table 2, this part has a full detailed report
for a comprehensive view of video streaming events. The timeline-
based report contains all video player activities from fetching the
URL to the end of the video streaming. It reports events for URL
retrieval, finding video and audio codecs, determining video and
audio decoders, pipelining, video and audio buffering, resolution,
playtime, timestamps for resolution changes, and all the other play-
back activities.

MOoVIE provides a detailed view of the Google Chrome video
player status during the video streaming. In general, the Google
Chrome player works as follows. First, the player gets frame url
and frame title. Then it seeks for the audio stream and extracts its
audio codec name. Finding the video stream and video codec name
are the next steps. Then it recognizes the audio and video decoders.
After that, it extracts the configuration such as samples_per_second,
bytes_per_frame, and codec_delay for audio file. It does the same
for video files and extracts information such as format, resolution,
and visible rect. Then it fills the audio and video buffers. Before
playing the video, it checks the for_suspended_start value of its
player. Finally, it starts the PLAY event. After playing video, it may
experience audio/video re-buffering or changing the video quality.
Pause, Stop, and Destroyed events happen when the user pauses,
stops, or closes the player.

4.24 Comparison: The last part of the tool facilitates comparison
of two video streaming experiments. In this study, we compared
streaming from YouTube and Facebook. This comparison uses se-
lected results from the foregoing sections.

Table 3 shows that YouTube uses Opus/VP9 as its audio/video
codecs, respectively, while Facebook uses AAC/H.264. In this exam-
ple, YouTube streamed 135 MB of content, while Facebook streamed
only 82 MB for the same video. Interestingly, Facebook experienced
10 quality switches, 4 audio rebuffering events, and 3 video rebuffer-
ing events, while YouTube had none. The playback start time of
Facebook (0.72 s) was faster than YouTube (1.23 s). Facebook used
512 flows, while YouTube used only 129 flows. Among these flows,
YouTube requested 42 video and 12 audio flows, while Facebook
requested 192 video flows and no audio flow. The main reason for
the latter difference is that Facebook uses the FB 360 Encoder! to

Ihttps://facebook360.fb.com/spatial-workstation
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Table 1: Player-level view of MoVIE, with QoE metrics

Player Value

Title YouTube
https://www.youtube.com/watch?

Frame URL v=sPyAQQklc1s&amp

Streaming URL blob:https://www.youtube.com/f169cece

-5961-401c-a2ae-da5d11322ee4

Audio Codec opus

Video Codec vp9

First Resolution 1440x2560
Video Duration 270.581 sec
Playing Duration 114.305362 sec
Pause Time 115.535713 sec
Stop Time 116.505313 sec
QoE Metrics

Player Start Time 1.230351 sec
Audio Rebuffering 0 times

Video Rebuffering 0 times
Quality Switches 0 times

Table 2: MoVIE reports detailed video player activities of the
Google Chrome player

Pl
’ayer Event Value
Time
0.000000 | origin_url https://www.youtube.com/
https://www.youtube.com/watch?
0.000009 | frame_url v=sPyAQQKIc1s
0.000011 | frame_title YouTube
0.000013 | surface_layer_mode kOnDemand
blob:https://www.youtube.com/
0.000146 url f169cece-5961-401c-a2ae-da5d11322ee4
0.000176 | info ChunkDemuxer: buffering by DTS
0.990527 | found_audio_stream True
0.990530 | audio_codec_name opus
1.036293 | found_video_stream True
1.036298 | video_codec_name vp9
1.037603 | audio decoder FFmpegAudioDecoder
Selected FFmpegAudioDecoder,
config: codec: opus,
: samples_per_second: 48000,
1.037622 info bytes_per_frame: 8,
seek_preroll: 80000us,
codec_delay: 312
1.037746 | video_decoder VpxVideoDecoder
Selected VpxVideoDecoder,
config: codec: vp9,
1.037759 | info profile: vp9 profileo,
coded size: [2560,1440],
rotation: 0°
1.037773 | pipeline_state kPlaying
1.039323 | audio_buffering_state | BUFFERING_HAVE_ENOUGH
1.050495 | height 1440
1.050495 | width 2560
1.060295 | video_buffering_state | BUFFERING_HAVE_ENOUGH
1.230131 | pipeline_buffering BUFFERING_HAVE_ENOUGH
1.230131 | for_suspended_start False
1.230351 | event PLAY
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Table 3: Comparison of YouTube and Facebook streaming of
“Lion Cub” video

Info YouTube Traffic Facebook Traffic
Original URL www.youtube.com | www.facebook.com
video_codec_name vp9 h264
audio_codec_name opus aac

Resolution 1440x2560 1184x2960

Video Duration 270.581 sec 270.67508 sec
Playing Duration 114.305362 sec 111.009935 sec
Received Packets 3648 (pkt) 8334 (pkt)
Received Packet Rate 30.65 (pkt/sec) 69.82 (pkt/sec)
Sent Packets 1966 (pkt) 8123 (pkt)

Sent Packet Rate 16.52 (pkt/sec) 68.06 (pkt/sec)
Received Bytes 135M 82M

Sent Bytes 270K 785K

Throughput IM 5M

Number of Flows 129 512

QoE Metrics

Play Start Time 1.230351 sec 0.715850 sec
Audio Rebuffering 0 times 4 times

Video Rebuffering 0 times 3 times

Quality Switches 0 times 10 times

combine video with multiple supported audio formats when upload-
ing 360° videos. Another interesting observation is how Facebook
responded to the video player during quality switches. Facebook
created and destroyed the video player 7 times during 10 quality
changes, while YouTube used just one instance of the video player
throughout the streaming.

5 RELATED WORK

There have been several prior works that have presented tools to
measure video quality metrics. PVQT! is a video quality measure-
ment tool to evaluate and compare video encoding with objective
quality measurements such as PSNR, Delta, MSAD, MSE, and so
on. Lie et al. [13] proposed EvalVid-RA, a framework for quality
measurement of the transferred video over a simulated network.
In addition to frame-level quality measurement, it measures QoS
metrics of the underlying network, such as loss, delay, and jitter.
Although these tools are good for analysis of video quality, they do
not support streaming traffic measurement.

Because the public demand for privacy requires end-to-end en-
cryption, providers face challenges to identify QoE to improve
their services. Dimopoulos et al. [5] proposed a framework to de-
tect video streaming QoE metrics from encrypted network traffic.
First, they studied video streaming from a web proxy viewpoint,
including more than 390,000 non-encrypted video sessions from a
large provider with 10M users. Then they analysed the video ses-
sions to find a methodology to extract QoE metrics from network
traffic. They tried to detect stall, resolution, and representation
fluctuations. For evaluation of their framework, they performed a
controlled experiment to detect QoE of unencrypted and encrypted
video sessions. The results showed that the proposed framework
can identify QoE metrics with 78% to 93.5% accuracy for unen-
crypted traffic, and 76% to 91.8% accuracy for encrypted traffic.

!http://www.compression.ru/index_en.htm
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However, they just use YouTube sessions to design and evaluate
their framework. Predicting QoE metrics in other video stream-
ing platforms, or even when YouTube changes its video delivery
methodology, is left for future work.

Joumblatt et al. [8] developed a predictive framework that uses
network performance metrics to identify user dissatisfaction with
video streaming. First, they merged the user-level feedback with the
low-level network metrics. Then they applied supervised machine
learning techniques to build non-linear and linear SVM predictors.
Although the proposed framework predicts user’s dissatisfaction
with acceptable accuracy, the proposed mechanism is limited by
its requirement to capture and understand user’s feedback and
behaviour.

There are several client-side tools that have been implemented to
run on user devices and measure QoE parameters more accurately.
Depending on the data collection methods, these tools could be
categorized into passive and active. Passive tools capture streaming
data from videos that are watched by an active user, while active
tools generate artificial video streaming. YoMo [23] is a passive
client-side measurement tool that consists of a Java application
and a Firefox plugin to measure QoE metrics of YouTube videos.
It constantly monitors the playout buffer status of the YouTube
application and predicts the QoE metrics. YoMo does not have any
correlation with the video characteristics, and the accuracy depends
on the bandwidth. Pytomo [9] is an active measurement tool that
crawls YouTube to measure the network latency metrics, the QoE
metrics, and the CDN information of videos as if they are being
viewed by a user.

Recently, there have been some studies where mobile apps have
been built to perform passive or active measurements to gather
network traces. However, some of these apps have limitations due
to their operating system capabilities, memory requirements, or
a lack of programming libraries. DynoDroid [14] and PUMA [7]
modify the device OS to track smartphone traffic at runtime. Some
drawbacks of these approaches are that they require device rooting,
and void the owner’s warranty [18]. Furthermore, dynamic analy-
sis causes significant runtime overheads in terms of memory and
bandwidth usage, which may reduce smartphone performance and
produce misleading results. For example, running the monitoring
app alongside video streaming, where the monitoring app requires
memory for runtime analysis and cloud data storage, could nega-
tively impact video player activities such as rendering and buffering.
Our tool focuses on the network level, and does not interfere with
the mobile traffic. Our approach thus has advantages in terms of
memory, performance, accuracy, and traffic visibility.

Beyond the domain of video streaming, there are some mobile
security tools that provide transparency into mobile network traffic.
PATHspider [11] is an open-source active measurement tool that
provides protocol transparency. PATHspider performs a controlled
comparison between two different protocols or protocol extensions.
Meddle [16] is a framework for enhancing transparency in mobile
networks. It combines a virtual private network (VPN) with mid-
dleboxes to provide an experimental platform that enables users
to control mobile traffic. It exploits VPNs to tunnel network traf-
fic through the Meddle server, from mobile devices to the target
machine where the researchers can control the network flows. How-
ever, this approach has overhead in terms of power consumption



SESSION 6: Performance Costs and Emerging Problems

and network latency. Also, there is a security problem, since the
mobile data goes through the third party server.

Ren et al. [18] developed ReCon, a machine-learning-based pri-
vacy tool that intercepts network traffic to detect PII leaks. It enables
a user to have control over the transmitted data. They conducted
a security measurement of popular mobile apps available in An-
droid, i0S, and Windows Phone. They used Meddle [16] on the
flows generated from devices. In a manual test, they interacted with
100 popular apps. In an automated test, they used a Monkey app
to test 1000 popular apps. Monkey is a command-line tool to per-
form regression testing on application by sending pseudo-random
streams of keystrokes, touches, and gestures to a device. The re-
sults indicated that the information leaked by an app varied across
operating systems. Besides, they observed that some applications
leak information through SSL encryption. Although these tools pro-
vide visibility of mobile usage, they cause memory and processing
overhead, increase battery consumption, and violate the warranty.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented MoVIE, a video streaming measure-
ment tool that provides visibility into network traffic from mo-
bile devices. It is an open-source and cross-platform solution to
study video streaming behaviour. MoVIE enables video streaming
researchers to have a comprehensive view of flows and network
traffic generated by a mobile device, and also video player activities.
We illustrate MoVIE’s functionality with a small case study of 360°
video streaming via Facebook and YouTube.

Our case study shows that MoVIE is a useful tool for mobile video
streaming studies. The source code and a demo are available from
our project Web site [6, 10]. Our ongoing work is extending the
tool to support iOS devices, other QoE metrics, and other network
data sets for mobile video streaming.

MOoVIE currently uses the Google Chrome browser as the web-

based video player. It uses Chrome’s properties to extract video
player status. However, MoVIE can provide similar functionalities
(except video player view), with other browsers like Safari and Fire-
fox. To deal with this, we aim to add machine learning techniques to
MoVIE to predict video quality, stall, and delay of video streaming.
As we see in the case study, MoVIE is able to analyze and compare
up to two video streaming sessions. However, extending MoVIE
to analyze more video streaming events requires more memory to
load and analyze packet trace files.
In our future work, we plan to make MoVIE an online tool to store
and process video streaming in the cloud. In addition, we will use
MOoVIE to study and characterizate different video streaming tech-
niques. Since MoVIE is an open-source tool, other contributors can
adapt it to study mobile network usage.
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